gpt4 book ai didi

python - 为什么 scipy.optimize.curve_fit 不适合数据?

转载 作者:IT老高 更新时间:2023-10-28 20:36:19 25 4
gpt4 key购买 nike

一段时间以来,我一直在尝试使用 scipy.optimize.curve_fit 对某些数据进行指数拟合,但我遇到了真正的困难。我真的看不出这不起作用的任何原因,但它只会产生一条直线,不知道为什么!

任何帮助将不胜感激

from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def func(x,a,b,c):
return a*numpy.exp(-b*x)-c


yData = numpy.load('yData.npy')
xData = numpy.load('xData.npy')

trialX = numpy.linspace(xData[0],xData[-1],1000)

# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trailX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = curve_fit(func, xData, yData)
yEXP = func(trialX, *popt)

pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX, y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()

enter image description here

xData = [1e-06, 2e-06, 3e-06, 4e-06,
5e-06, 6e-06, 7e-06, 8e-06,
9e-06, 1e-05, 2e-05, 3e-05,
4e-05, 5e-05, 6e-05, 7e-05,
8e-05, 9e-05, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009, 0.001,
0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01]

yData =
[6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08, 3.38556130078e-08, 3.55765277358e-08,
4.13818145846e-08, 4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08, 1.45110636413e-07,
1.83066627931e-07, 2.10138415308e-07, 2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07, 5.98480176303e-07, 6.57028222701e-07,
6.98347073045e-07, 7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07, 7.87147246927e-07,
7.99607141001e-07, 8.61398763228e-07, 8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07, 9.16878548643e-07, 9.18389990067e-07]

最佳答案

当不输入极小(或大)的数字时,数值算法往往会更好地工作。

在这种情况下,图表显示您的数据具有极小的 x 和 y 值。如果对它们进行缩放,则拟合效果会更好:

xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

from __future__ import division

import os
os.chdir(os.path.expanduser('~/tmp'))

import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt

def func(x,a,b,c):
return a*np.exp(-b*x)-c


xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

print(xData.min(), xData.max())
print(yData.min(), yData.max())

trialX = np.linspace(xData[0], xData[-1], 1000)

# Fit a polynomial
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)

plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()

enter image description here

注意,xDatayData重新缩放后,curve_fit返回的参数也必须重新缩放。在这种情况下,abc 都必须除以 10**5 才能获得原始数据的拟合参数。


您可能对上述内容的一个反对意见是,必须“谨慎”地选择缩放比例。 (阅读:并非所有合理的比例选择都有效!)

您可以通过为参数提供合理的初始猜测来提高 curve_fit 的稳健性。通常,您对数据有一些先验知识,这些知识可以激发对合理参数值的粗略/信封类型猜测。

例如,用

调用 curve_fit
guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)

有助于改进 curve_fit 在这种情况下成功的尺度范围。

关于python - 为什么 scipy.optimize.curve_fit 不适合数据?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15624070/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com