- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我正在处理一堆大型 numpy 数组,由于最近这些数组开始占用太多内存,我想用 numpy.memmap
实例替换它们。问题是,有时我必须调整数组的大小,我最好就地这样做。这对普通数组非常有效,但在 memmaps 上尝试会提示数据可能是共享的,甚至禁用 refcheck 也无济于事。
a = np.arange(10)
a.resize(20)
a
>>> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
a = np.memmap('bla.bin', dtype=int)
a
>>> memmap([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
a.resize(20, refcheck=False)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-41-f1546111a7a1> in <module>()
----> 1 a.resize(20, refcheck=False)
ValueError: cannot resize this array: it does not own its data
调整底层 mmap 缓冲区的大小可以正常工作。问题是如何将这些更改反射(reflect)到数组对象中。我看过这个workaround ,但不幸的是,它不会适本地调整数组的大小。还有一些numpy documentation关于调整 mmap 的大小,但它显然不起作用,至少在 1.8.0 版中是这样。任何其他想法,如何覆盖内置的调整大小检查?
最佳答案
问题在于,当您创建数组时,标志 OWNDATA 为 False。您可以通过在创建数组时要求标志为 True 来更改它:
>>> a = np.require(np.memmap('bla.bin', dtype=int), requirements=['O'])
>>> a.shape
(10,)
>>> a.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> a.resize(20, refcheck=False)
>>> a.shape
(20,)
唯一需要注意的是,它可能会创建数组并制作副本以确保满足要求。
编辑以保存地址:
如果要将调整大小的数组保存到磁盘,可以将 memmap 保存为 .npy 格式的文件,并在需要重新打开时以 numpy.memmap
的形式打开,用作memmap:
>>> a[9] = 1
>>> np.save('bla.npy',a)
>>> b = np.lib.format.open_memmap('bla.npy', dtype=int, mode='r+')
>>> b
memmap([0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
编辑以提供另一种方法:
您可以通过调整基本 mmap(a.base 或 a._mmap,以 uint8 格式存储)的大小并“重新加载”memmap 来接近您正在寻找的内容:
>>> a = np.memmap('bla.bin', dtype=int)
>>> a
memmap([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> a[3] = 7
>>> a
memmap([0, 0, 0, 7, 0, 0, 0, 0, 0, 0])
>>> a.flush()
>>> a = np.memmap('bla.bin', dtype=int)
>>> a
memmap([0, 0, 0, 7, 0, 0, 0, 0, 0, 0])
>>> a.base.resize(20*8)
>>> a.flush()
>>> a = np.memmap('bla.bin', dtype=int)
>>> a
memmap([0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
关于python - 调整 numpy.memmap 数组的大小,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20932361/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!