- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我有一个已经训练了 40 个 epoch 的模型。我为每个时期保留了检查点,并且我还使用 model.save()
保存了模型。训练代码为:
n_units = 1000
model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# define the checkpoint
filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)
但是,当我加载模型并尝试再次对其进行训练时,它会重新开始,就好像它之前没有进行过训练一样。损失不是从上次训练开始的。
让我感到困惑的是,当我加载模型并重新定义模型结构并使用 load_weight
时,model.predict()
效果很好。因此,我相信模型权重已加载:
model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
filename = "word2vec-39-0.0027.hdf5"
model.load_weights(filename)
model.compile(loss='mean_squared_error', optimizer='adam')
但是,当我继续训练时,损失与初始阶段一样高:
filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)
我搜索并找到了一些保存和加载模型的示例here和 here .但是,它们都不起作用。
更新 1
我看了this question ,试了一下,效果不错:
model.save('partly_trained.h5')
del model
load_model('partly_trained.h5')
但是当我关闭 Python 并重新打开它,然后再次运行 load_model
时,它会失败。损失与初始状态一样高。
更新 2
我试过 Yu-Yang's example code它有效。但是,当我再次使用我的代码时,它仍然失败。
这是原始训练的结果。第二个 epoch 应该从 loss = 3.1*** 开始:
13700/13846 [============================>.] - ETA: 0s - loss: 3.0519
13750/13846 [============================>.] - ETA: 0s - loss: 3.0511
13800/13846 [============================>.] - ETA: 0s - loss: 3.0512Epoch 00000: loss improved from inf to 3.05101, saving model to LPT-00-3.0510.h5
13846/13846 [==============================] - 81s - loss: 3.0510
Epoch 2/60
50/13846 [..............................] - ETA: 80s - loss: 3.1754
100/13846 [..............................] - ETA: 78s - loss: 3.1174
150/13846 [..............................] - ETA: 78s - loss: 3.0745
我关闭 Python,重新打开它,使用 model = load_model("LPT-00-3.0510.h5")
加载模型,然后使用以下命令进行训练:
filepath="LPT-{epoch:02d}-{loss:.4f}.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=60, batch_size=50, callbacks=callbacks_list)
损失从4.54开始:
Epoch 1/60
50/13846 [..............................] - ETA: 162s - loss: 4.5451
100/13846 [..............................] - ETA: 113s - loss: 4.3835
最佳答案
由于很难弄清楚问题出在哪里,我从你的代码中创建了一个玩具示例,它似乎工作正常。
import numpy as np
from numpy.testing import assert_allclose
from keras.models import Sequential, load_model
from keras.layers import LSTM, Dropout, Dense
from keras.callbacks import ModelCheckpoint
vec_size = 100
n_units = 10
x_train = np.random.rand(500, 10, vec_size)
y_train = np.random.rand(500, vec_size)
model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# define the checkpoint
filepath = "model.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)
# load the model
new_model = load_model(filepath)
assert_allclose(model.predict(x_train),
new_model.predict(x_train),
1e-5)
# fit the model
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
new_model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)
模型加载后损失继续减少。 (重启python也没有问题)
Using TensorFlow backend.
Epoch 1/5
500/500 [==============================] - 2s - loss: 0.3216 Epoch 00000: loss improved from inf to 0.32163, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.2923 Epoch 00001: loss improved from 0.32163 to 0.29234, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.2542 Epoch 00002: loss improved from 0.29234 to 0.25415, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.2086 Epoch 00003: loss improved from 0.25415 to 0.20860, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1725 Epoch 00004: loss improved from 0.20860 to 0.17249, saving model to model.h5
Epoch 1/5
500/500 [==============================] - 0s - loss: 0.1454 Epoch 00000: loss improved from inf to 0.14543, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.1289 Epoch 00001: loss improved from 0.14543 to 0.12892, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.1169 Epoch 00002: loss improved from 0.12892 to 0.11694, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.1097 Epoch 00003: loss improved from 0.11694 to 0.10971, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1057 Epoch 00004: loss improved from 0.10971 to 0.10570, saving model to model.h5
顺便说一句,重新定义模型后跟 load_weight()
肯定行不通,因为 save_weight()
和 load_weight()
不保存/加载优化器。
关于python - Keras:如何保存模型并继续训练?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45393429/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!