- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我正在尝试将神经网络权重保存到文件中,然后通过初始化网络而不是随机初始化来恢复这些权重。我的代码适用于随机初始化。但是,当我从文件初始化权重时,它向我显示一个错误 TypeError: Input 'b' of 'MatMul' Op has type float64 that does not match type float32 of argument'a'.
我不不知道如何解决这个问题。这是我的代码:
模型初始化
# Parameters
training_epochs = 5
batch_size = 64
display_step = 5
batch = tf.Variable(0, trainable=False)
regualarization = 0.008
# Network Parameters
n_hidden_1 = 300 # 1st layer num features
n_hidden_2 = 250 # 2nd layer num features
n_input = model.layer1_size # Vector input (sentence shape: 30*10)
n_classes = 12 # Sentence Category detection total classes (0-11 categories)
#History storing variables for plots
loss_history = []
train_acc_history = []
val_acc_history = []
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
模型参数
#loading Weights
def weight_variable(fan_in, fan_out, filename):
stddev = np.sqrt(2.0/fan_in)
if (filename == ""):
initial = tf.random_normal([fan_in,fan_out], stddev=stddev)
else:
initial = np.loadtxt(filename)
print initial.shape
return tf.Variable(initial)
#loading Biases
def bias_variable(shape, filename):
if (filename == ""):
initial = tf.constant(0.1, shape=shape)
else:
initial = np.loadtxt(filename)
print initial.shape
return tf.Variable(initial)
# Create model
def multilayer_perceptron(_X, _weights, _biases):
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
return tf.matmul(layer_2, weights['out']) + biases['out']
# Store layers weight & bias
weights = {
'h1': w2v_utils.weight_variable(n_input, n_hidden_1, filename="weights_h1.txt"),
'h2': w2v_utils.weight_variable(n_hidden_1, n_hidden_2, filename="weights_h2.txt"),
'out': w2v_utils.weight_variable(n_hidden_2, n_classes, filename="weights_out.txt")
}
biases = {
'b1': w2v_utils.bias_variable([n_hidden_1], filename="biases_b1.txt"),
'b2': w2v_utils.bias_variable([n_hidden_2], filename="biases_b2.txt"),
'out': w2v_utils.bias_variable([n_classes], filename="biases_out.txt")
}
# Define loss and optimizer
#learning rate
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
learning_rate = tf.train.exponential_decay(
0.02*0.01, # Base learning rate. #0.002
batch * batch_size, # Current index into the dataset.
X_train.shape[0], # Decay step.
0.96, # Decay rate.
staircase=True)
# Construct model
pred = tf.nn.relu(multilayer_perceptron(x, weights, biases))
#L2 regularization
l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
#Softmax loss
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
#Total_cost
cost = cost+ (regualarization*0.5*l2_loss)
# Adam Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost,global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Initializing the variables
init = tf.initialize_all_variables()
print "Network Initialized!"
最佳答案
tf.matmul()
op 不执行自动类型转换,因此它的两个输入必须具有相同的元素类型。您看到的错误消息表明您调用了 tf.matmul()
,其中第一个参数的类型为 tf.float32
,第二个参数的类型为 >tf.float64
。您必须转换其中一个输入以匹配另一个,例如使用 tf.cast(x, tf.float32)
.
查看您的代码,我看不到任何地方明确创建了 tf.float64
张量(TensorFlow Python 中浮点值的默认 dtype
API——例如对于 tf.constant(37.0)
——是 tf.float32
)。我猜这些错误是由 np.loadtxt(filename)
调用引起的,它可能正在加载 np.float64
数组。您可以显式更改它们以加载 np.float32
数组(转换为 tf.float32
张量),如下所示:
initial = np.loadtxt(filename).astype(np.float32)
关于python - 如何修复 MatMul Op 的 float64 类型与 float32 TypeError 类型不匹配?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36210887/
我正在使用 React Native 构建移动应用程序。我面临 Nativ Base Toast 问题。当我第一次加载应用程序然后导航到工单状态时,如果我返回带有 android 后退按钮的主页,则会
我正在尝试创建一个“完美的滚动条”,它是这样的:。Https://github.com/noraesae/perfect-scrollbar-bower。使用尽可能简单的代码:。我犯了以下错误:。当然
我正在尝试在简单的 Draftjs 编辑器上应用自定义装饰器: import React from 'react'; import {Editor, EditorState, RichUtils} f
读取以钟形字符作为分隔符的CSV文件时,出现类型错误。我不想使用熊猫,我需要使用CSV库来解决这个问题。。示例标题:。数据类型。样本数据:。示例代码。我明白这个错误-。铃声字符参考-https://w
我正在处理 useSelector的 react-redux在我的 React Native 应用程序中,我收到以下错误: TypeError: TypeError: (0, _reactRedux.
当我用 Node 运行以下代码时: var command = "/home/myScript.sh"; fs.exists(command, function(exists){ if(exi
我正在为我的一个组件编写测试用例,该组件具有路由器(使用 withrouter)。我收到错误 wrapper.find is not a function。基本要求是需要检查我的渲染中是否存在标签,还
我一直在研究一个简单的表单提交。首先,我想在提交表单之前创建一个模式警报。于是,我使用了bootstrap的modal函数,反复得到 TypeError: $(...).modal is not a
这个问题在这里已经有了答案: Flask-Login raises TypeError: 'bool' object is not callable when trying to override
这是我在leetcode中遇到的问题。您将看到两个非空链接表,表示两个非负整数。数字以相反的顺序存储,并且它们的每个节点都包含一个数字。将这两个数字相加,然后以链表的形式返回总和。。你可以假设这两个数
我正在尝试学习Python,并试图将GitHub问题变成一种可读的形式。根据关于如何将JSON转换为CSV的建议,我得出了以下结论:。其中“Issues.json”是包含GitHub问题的JSON文件
我在使用 Proxy 类时遇到了这个有趣的错误: TypeError: 'set' on proxy: trap returned truish for property 'users' which
在研究Jupyter笔记本电脑时,我遇到了这个问题:。这是代码开始的地方:。下面的代码是在jupyter笔记本的另一个单元上运行的。我怎么才能解决它呢?。尝试更改参数和一系列其他内容,但所有这些都弹出
Working on jupyter notebooks, I came across this problem:在研究Jupyter笔记本电脑时,我遇到了这个问题: TypeError:un
我对此很陌生(对于 Jasmine 测试、ExtJs 和 JS 来说确实很陌生),我必须修复这个错误/错误。我正在运行一些单元测试,但不断收到以下错误: TypeError: object is no
在下面的文档中,我们可以不使用JupyterDash在笔记本中运行应用程序,而只需运行app.run(jupyter_mode=“外部”)。。Https://dash.plotly.com/dash-
导入地理位置时: import { Geolocation } from '@ionic-native/geolocation/ngx'; 获取错误: ionic Geolocation :Ionic
我定义了以下函数: def eigval(matrix): a = matrix[0, 0] b = matrix[0, 1] c = matrix[1, 0] d =
刚刚获得了SDXL模型的访问权限,希望为即将发布的版本进行测试...不幸的是,我们当前用于我们服务的代码似乎不能与稳定ai/稳定-扩散-xl-base-0.9一起工作,我不完全确定SDXL有什么不同,
这是我的全部代码。我试图通过/insta/:id在我的page.ejs页面上查找,但它显示错误:。无法读取未定义的属性(正在读取‘UserName’)。。我希望获得uuidv4()将提供的id,但它返
我是一名优秀的程序员,十分优秀!