- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
Pandas有以下示例说明如何在 HDF5 文件中存储 Series
、DataFrames
和 Panels
:
In [1142]: store = HDFStore('store.h5')
In [1143]: index = date_range('1/1/2000', periods=8)
In [1144]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [1145]: df = DataFrame(randn(8, 3), index=index,
......: columns=['A', 'B', 'C'])
......:
In [1146]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
......: major_axis=date_range('1/1/2000', periods=5),
......: minor_axis=['A', 'B', 'C', 'D'])
......:
In [1147]: store['s'] = s
In [1148]: store['df'] = df
In [1149]: store['wp'] = wp
In [1150]: store
Out[1150]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame (shape->[8,3])
/s series (shape->[5])
/wp wide (shape->[2,5,4])
In [1151]: store.close()
在上面的代码中,数据是什么时候真正写入磁盘的?
假设我想将位于 .csv
文件中的数千个大型数据帧添加到单个 .h5
文件中。我需要加载它们并将它们一一添加到 .h5
文件中,因为我无法将它们一次全部存储在内存中,因为它们会占用太多内存. HDF5可以做到这一点吗?正确的做法是什么?
Pandas 文档说明如下:
"These stores are not appendable once written (though you simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety."
不可追加也不可查询是什么意思?另外,不应该说一次close而不是written吗?
最佳答案
语句一执行,例如store['df'] = df
。 close
只是关闭实际文件(如果进程存在,它将为您关闭,但会打印一条警告消息)
阅读 http://pandas.pydata.org/pandas-docs/dev/io.html#storing-in-table-format 部分
在 .h5
文件中放置大量节点通常不是一个好主意。您可能希望追加并创建较少数量的节点。
您可以逐一遍历您的 .csv
和 store/append
它们。比如:
for f in files:
df = pd.read_csv(f)
df.to_hdf('file.h5',f,df)
将是一种方式(为每个文件创建一个单独的节点)
不可附加 - 一旦你写了它,你只能一次检索它,例如你不能选择一个小节
如果您有一张 table ,那么您可以执行以下操作:
pd.read_hdf('my_store.h5','a_table_node',['index>100'])
类似于数据库查询,只获取部分数据
因此,存储不可追加,也不可查询,而表既可追加,也不可查询。
关于python - 在 Pandas 中迭代写入 HDF5 存储,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16637271/
只是想知道我对组/数据集名称的自由程度如何,或者是否需要使名称简短(因此可读性较差)。这适用于包含许多具有许多重复名称的组和数据集的 HDF5 文件。一些 XML API 做 string inter
简短问题 当 Pandas 在 HDFStore 上工作时(例如: .mean() 或 .apply() ),它是否将内存中的完整数据作为 DataFrame 加载,还是将记录作为 Serie 进行处
我有几个不同的相关数据框(如果需要,可以使用 id 加入它们)。但是,我并不总是同时需要它们。 由于它们非常大,将它们存储在单独的 HDF 存储中是否有意义?或者当我处理同一文件中的其他帧时,携带“未
我似乎无法让它发挥作用。所有示例和线程都让人创建新的数据集。我只想更新已创建的数据集中的一个字段。 这是我所拥有的: h5_file = h5py.File(event_file_path, "r+"
我在 hadoop 上写入小文件时遇到一个奇怪的问题。下面是示例程序 public void writeFile(Configuration conf, String message, String
当我运行 hdf namenode -format 时,它想要删除目录 /home/hadoop/hadooptmpdata/dfs/name/current 但它没有权限执行此操作。如何授予它权限?
有没有办法使用 pandas HDF 存储获取 HDF 表的信息? 例如在 SQL 中有: SELECT COUNT(*) 我想阅读基本表格大小而不必自己加载表格。 最佳答案 试试这个: In [4]
在 pandas 下,每次我使用表格格式而不是固定格式时,我的内存消耗都会爆炸。 import numpy as np np.random.seed(seed=10) df = pd.DataFram
我正在处理大量数据集,每个数据集都是一个 pandas DataFrame,由于它们的大小,我需要从磁盘访问它们。从我读到的内容来看,HDF 似乎是与它们一起工作的好方法,但我对构建数据的最佳方法有点
我正在开发云服务器,我需要使用 blob 存储来存储 HDF 文件 ( http://www.hdfgroup.org/HDF5/ )。 与文件中的创建、读取、写入和修改数据元素相关的函数来自 HDF
我正在尝试将数据存储为 hdf 格式,并希望将默认数据类型设置为表,以便稍后查询。 我正在使用基本代码: import pandas as pd from numpy import random as
我最近在 Lubuntu 上安装了 Anacondas Python。 我正在尝试加载可在 Windows PC 上运行的 HDF 文件: In [14]: import pandas as pd I
我写了下面的脚本,但是我有一个内存消耗的问题,pandas 分配了超过 30 G 的内存,其中数据文件的总和大约是 18 G import pandas as pd import numpy as n
您好,我看到了一些以 HDF5 格式存储的科学数据,我想知道是否有任何 NoSQl 解决方案可以达到与 HDF5 相同的读/写性能。 我的示例的数据使用树结构(/root 然后/root/key 然后
我想知道如何获取 hdf 文件的列名(似乎存储在 hdf header 中);例如,一个文件可能有名为 [a,b,c,d] 的列,而另一个文件有 [a,b,c] 列,而另一个文件有 [b,e,r,z]
我想做什么? pd.read_csv(... nrows=###) 可以读取文件的前 n 行。我想在使用 pd.read_hdf(...) 时做同样的事情。 问题是什么? 我对 documentati
我想将数千张动物图像加载到 pandas df 中,添加特征并可能转换为 HDF。 我使用 cv2.imread() 尝试了以下方法 import cv2 import os import numpy
我想知道 HDF 套件中嵌入的 kafka 和 Confluence 套件中嵌入的 kafka 之间的差异,特别是模式注册工具。 最佳答案 https://registry-project.readt
我想知道 HDF 套件中嵌入的 kafka 和 Confluence 套件中嵌入的 kafka 之间的差异,特别是模式注册工具。 最佳答案 https://registry-project.readt
我使用 pandas 和 hdf5 文件来处理大量数据(例如 10GB 或更多)。我想使用表格格式,以便在读取数据时能够有效地查询数据。但是,当我想将数据写入 hdf 存储时(使用 DataFrame
我是一名优秀的程序员,十分优秀!