gpt4 book ai didi

mongodb - 如何在 MongoDB 聚合查询中使用 $hint?

转载 作者:IT老高 更新时间:2023-10-28 13:22:40 40 4
gpt4 key购买 nike

我在 ubuntu 机器上使用 mongo v3.0.1。我有 3 亿行的集合。我根据我的查询偏好创建了两个索引。

当我尝试使用解释运行聚合时,它占用了低效的索引,这就是为什么它需要多花 20-25 秒的时间。有什么方法可以放 $hint,以便我的聚合查询使用适当的索引。

$match 处于我的第一个管道阶段。我有两个索引:

  1. “Host_-1_SiteType_-1”

  2. “访问时间_-1_AccountId_-1_Host_-1_SiteType_-1_Extension_-1_LifeTime_-1”

我的 $match 管道就像:

{ "$match" : {
"AccountId": accID,
"VisitTime": { "$lte" : today, "$gte" : last365Days },
"$or": [
{ "$and": [
{ "Extension":{ "$in": ["chrome_0","firefox_0"] }},
{ "LifeTime": 0 }
]},
{ "LifeTime": { "$gt": 1000 }}
],
"Host": { "$ne": "localhost" },
"SiteType" : { "$exists": true },
}

它使用第一个索引,而不是第二个索引。以及第一个索引在 50 秒内花费的时间,而仅使用第二个索引只需要 18 秒。

这是我的一份文件样本:

{ 
"_id" : "2bc1143c-07e4-4c37-a020-a7485b2802a3",
"CreatedDate" : ISODate("2015-07-22T04:05:06.802+0000"),
"UpdatedDate" : ISODate("2015-07-22T05:28:26.469+0000"),
"AccountId" : accID,
"Url" : "http://www.test.com/test.html",
"Host" : "test.com",
"VisitTime" : ISODate("2014-08-12T18:08:25.813+0000"),
"LifeTime" : 789546.01,
"Status" : "closed",
"LocalTime" : ISODate("2014-08-12T18:08:25.813+0000"),
"DeviceId" : "123456789",
"Extension" : "firefox_0",
"SubSiteType" : "TestSubSite",
"SiteType" : "TestSite",
"Flag" : "1"
}

这是我的聚合解释:

{
"stages" : [
{
"$cursor" : {
"query" : {
"AccountId" : "accID",
"VisitTime" : {
"$lte" : "2015-07-25T18:30:00Z",
"$gte" : "2014-07-25T18:30:00Z"
},
"Host" : {
"$ne" : "localhost"
},
"SiteType" : {
"$exists" : true
},
"$or" : [
{
"$and" : [
{
"Extension" : {
"$in" : [
"chrome_0",
"firefox_0"
]
}
},
{
"LifeTime" : 0
}
]
},
{
"LifeTime" : {
"$gt" : 1000
}
}
]
},
"fields" : {
"Host" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "Test",
"indexFilterSet" : false,
"parsedQuery" : {
"$and" : [
{
"$or" : [
{
"$and" : [
{
"LifeTime" : {
"$eq" : 0
}
},
{
"Extension" : {
"$in" : [
"chrome_0",
"firefox_0"
]
}
}
]
},
{
"LifeTime" : {
"$gt" : 1000
}
}
]
},
{
"$not" : {
"Host" : {
"$eq" : "localhost"
}
}
},
{
"VisitTime" : {
"$lte" : "2015-07-25T18:30:00Z"
}
},
{
"AccountId" : {
"$eq" : "accID"
}
},
{
"VisitTime" :"2014-07-25T18:30:00Z"

},
{
"SiteType" : {
"$exists" : true
}
}
]
},
"winningPlan" : {
"stage" : "FETCH",
"filter" : {
"$and" : [
{
"SiteType" : {
"$exists" : true
}
},
{
"$or" : [
{
"$and" : [
{
"LifeTime" : {
"$eq" : 0
}
},
{
"Extension" : {
"$in" : [
"chrome_0",
"firefox_0"
]
}
}
]
},
{
"LifeTime" : {
"$gt" : 1000
}
}
]
},
{
"VisitTime" : {
"$lte" : "2015-07-25T18:30:00Z"
}
},
{
"AccountId" : {
"$eq" : "accID"
}
},
{
"VisitTime" : {
"$gte" : "2014-07-25T18:30:00Z"
}
}
]
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"Host" : -1,
"SiteType" : -1
},
"indexName" : "Host_-1_SiteType_-1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"Host" : [
"[MaxKey, \"localhost\")",
"(\"localhost\", MinKey]"
],
"SiteType" : [
"[MaxKey, MinKey]"
]
}
}
},
"rejectedPlans" : [
{
"stage" : "FETCH",
"filter" : {
"$and" : [
{
"SiteType" : {
"$exists" : true
}
},
{
"$or" : [
{
"$and" : [
{
"LifeTime" : {
"$eq" : 0
}
},
{
"Extension" : {
"$in" : [
"chrome_0",
"firefox_0"
]
}
}
]
},
{
"LifeTime" : {
"$gt" : 1000
}
}
]
}
]
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"VisitTime" : -1,
"AccountId" : -1,
"Host" : -1,
"SiteType" : -1,
"Extension" : -1,
"LifeTime" : -1
},
"indexName" : "VisitTime_-1_AccountId_-1_Host_-1_SiteType_-1_Extension_-1_LifeTime_-1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"VisitTime" : [
"[new Date(1437849000000), new Date(1406313000000)]"
],
"AccountId" : [
"[\"accID\", \"accID\"]"
],
"Host" : [
"[MaxKey, \"localhost\")",
"(\"localhost\", MinKey]"
],
"SiteType" : [
"[MaxKey, MinKey]"
],
"Extension" : [
"[MaxKey, MinKey]"
],
"LifeTime" : [
"[MaxKey, MinKey]"
]
}
}
}
]
}
}
},
{
"$group" : {
"_id" : "$Host",
"Count" : {
"$sum" : {
"$const" : 1
}
}
}
},
{
"$sort" : {
"sortKey" : {
"Count" : -1
},
"limit" : 5
}
},
{
"$project" : {
"_id" : false,
"Host" : "$_id",
"TotalVisit" : "$Count"
}
}
],
"ok" : 1
}

最佳答案

2019 年答案

从 MongoDB 3.6 版开始

来自documentation ,您可以通过以下方式添加聚合提示:

db.collection.aggregate(pipeline, {hint: "index_name"})

如果您想查看说明,只需添加说明,就像没有 hint

一样

关于mongodb - 如何在 MongoDB 聚合查询中使用 $hint?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31633871/

40 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com