- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
TL;DR 如果 Pandas DataFrame 中加载的字段本身包含 JSON 文档,如何以类似 Pandas 的方式使用它们?
目前,我将 Twitter 库 (twython) 中的 json/字典结果直接转储到 Mongo 集合中(此处称为用户)。
from twython import Twython
from pymongo import MongoClient
tw = Twython(...<auth>...)
# Using mongo as object storage
client = MongoClient()
db = client.twitter
user_coll = db.users
user_batch = ... # collection of user ids
user_dict_batch = tw.lookup_user(user_id=user_batch)
for user_dict in user_dict_batch:
if(user_coll.find_one({"id":user_dict['id']}) == None):
user_coll.insert(user_dict)
填充此数据库后,我将文档读入 Pandas:
# Pull straight from mongo to pandas
cursor = user_coll.find()
df = pandas.DataFrame(list(cursor))
这就像魔术一样:
我希望能够修改“状态”字段 Pandas 样式(直接访问属性)。有什么办法吗?
编辑:类似于 df['status:text']。状态具有诸如“文本”、“已创建_at”之类的字段。一种选择是展平/规范化这个 json 字段,如 this pull request Wes McKinney 正在研究。
最佳答案
一种解决方案就是用 Series 构造函数将其粉碎:
In [1]: df = pd.DataFrame([[1, {'a': 2}], [2, {'a': 1, 'b': 3}]])
In [2]: df
Out[2]:
0 1
0 1 {u'a': 2}
1 2 {u'a': 1, u'b': 3}
In [3]: df[1].apply(pd.Series)
Out[3]:
a b
0 2 NaN
1 1 3
在某些情况下,您会想要 concat这个到 DataFrame 代替 dict 行:
In [4]: dict_col = df.pop(1) # here 1 is the column name
In [5]: pd.concat([df, dict_col.apply(pd.Series)], axis=1)
Out[5]:
0 a b
0 1 2 NaN
1 2 1 3
如果它更深入,你可以这样做几次......
关于python - 如何访问 Pandas DataFrame 中嵌入的 json 对象?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18665284/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!