gpt4 book ai didi

pandas - 为什么在 Alpine Linux 上安装 Pandas 需要很长时间

转载 作者:IT老高 更新时间:2023-10-28 12:35:00 24 4
gpt4 key购买 nike

我注意到使用基本操作系统 Alpine 与 CentOS 或 Debian 在 Docker 容器中安装 Pandas 和 Numpy(它的依赖项)需要更长的时间。我在下面创建了一个小测试来演示时差。除了 Alpine 需要几秒钟来更新和下载构建依赖项以安装 Pandas 和 Numpy 之外,为什么 setup.py 需要比 Debian 安装多 70 倍的时间?

是否有任何方法可以使用 Alpine 作为基础镜像来加快安装速度,或者是否有另一个大小与 Alpine 相当的基础镜像更适合用于 Pandas 和 Numpy 等软件包?

Dockerfile.debian

FROM python:3.6.4-slim-jessie

RUN pip install pandas

使用 Pandas 和 Numpy 构建 Debian 镜像:

[PandasDockerTest] time docker build -t debian-pandas -f Dockerfile.debian . --no-cache
Sending build context to Docker daemon 3.072kB
Step 1/2 : FROM python:3.6.4-slim-jessie
---> 43431c5410f3
Step 2/2 : RUN pip install pandas
---> Running in 2e4c030f8051
Collecting pandas
Downloading pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl (26.2MB)
Collecting numpy>=1.9.0 (from pandas)
Downloading numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)
Collecting pytz>=2011k (from pandas)
Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)
Collecting python-dateutil>=2 (from pandas)
Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
Collecting six>=1.5 (from python-dateutil>=2->pandas)
Downloading six-1.11.0-py2.py3-none-any.whl
Installing collected packages: numpy, pytz, six, python-dateutil, pandas
Successfully installed numpy-1.14.1 pandas-0.22.0 python-dateutil-2.6.1 pytz-2018.3 six-1.11.0
Removing intermediate container 2e4c030f8051
---> a71e1c314897
Successfully built a71e1c314897
Successfully tagged debian-pandas:latest
docker build -t debian-pandas -f Dockerfile.debian . --no-cache 0.07s user 0.06s system 0% cpu 13.605 total

Dockerfile.alpine

FROM python:3.6.4-alpine3.7

RUN apk --update add --no-cache g++

RUN pip install pandas

使用 Pandas 和 Numpy 构建 Alpine 镜像:

[PandasDockerTest] time docker build -t alpine-pandas -f Dockerfile.alpine . --no-cache
Sending build context to Docker daemon 16.9kB
Step 1/3 : FROM python:3.6.4-alpine3.7
---> 4b00a94b6f26
Step 2/3 : RUN apk --update add --no-cache g++
---> Running in 4b0c32551e3f
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/17) Upgrading musl (1.1.18-r2 -> 1.1.18-r3)
(2/17) Installing libgcc (6.4.0-r5)
(3/17) Installing libstdc++ (6.4.0-r5)
(4/17) Installing binutils-libs (2.28-r3)
(5/17) Installing binutils (2.28-r3)
(6/17) Installing gmp (6.1.2-r1)
(7/17) Installing isl (0.18-r0)
(8/17) Installing libgomp (6.4.0-r5)
(9/17) Installing libatomic (6.4.0-r5)
(10/17) Installing pkgconf (1.3.10-r0)
(11/17) Installing mpfr3 (3.1.5-r1)
(12/17) Installing mpc1 (1.0.3-r1)
(13/17) Installing gcc (6.4.0-r5)
(14/17) Installing musl-dev (1.1.18-r3)
(15/17) Installing libc-dev (0.7.1-r0)
(16/17) Installing g++ (6.4.0-r5)
(17/17) Upgrading musl-utils (1.1.18-r2 -> 1.1.18-r3)
Executing busybox-1.27.2-r7.trigger
OK: 184 MiB in 50 packages
Removing intermediate container 4b0c32551e3f
---> be26c3bf4e42
Step 3/3 : RUN pip install pandas
---> Running in 36f6024e5e2d
Collecting pandas
Downloading pandas-0.22.0.tar.gz (11.3MB)
Collecting python-dateutil>=2 (from pandas)
Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
Collecting pytz>=2011k (from pandas)
Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)
Collecting numpy>=1.9.0 (from pandas)
Downloading numpy-1.14.1.zip (4.9MB)
Collecting six>=1.5 (from python-dateutil>=2->pandas)
Downloading six-1.11.0-py2.py3-none-any.whl
Building wheels for collected packages: pandas, numpy
Running setup.py bdist_wheel for pandas: started
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: still running...
Running setup.py bdist_wheel for pandas: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/e8/ed/46/0596b51014f3cc49259e52dff9824e1c6fe352048a2656fc92
Running setup.py bdist_wheel for numpy: started
Running setup.py bdist_wheel for numpy: still running...
Running setup.py bdist_wheel for numpy: still running...
Running setup.py bdist_wheel for numpy: still running...
Running setup.py bdist_wheel for numpy: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/9d/cd/e1/4d418b16ea662e512349ef193ed9d9ff473af715110798c984
Successfully built pandas numpy
Installing collected packages: six, python-dateutil, pytz, numpy, pandas
Successfully installed numpy-1.14.1 pandas-0.22.0 python-dateutil-2.6.1 pytz-2018.3 six-1.11.0
Removing intermediate container 36f6024e5e2d
---> a93c59e6a106
Successfully built a93c59e6a106
Successfully tagged alpine-pandas:latest
docker build -t alpine-pandas -f Dockerfile.alpine . --no-cache 0.54s user 0.33s system 0% cpu 16:08.47 total

最佳答案

基于 Debian 的镜像仅使用 python pip 来安装 .whl 格式的软件包:

  Downloading pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl (26.2MB)
Downloading numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)

WHL 格式被开发为一种安装 Python 软件的更快、更可靠的方法,而不是每次都从源代码重新构建。 WHL 文件只需移动到要安装的目标系统上的正确位置,而源代码分发版则需要在安装前执行构建步骤。

基于 Alpine 平台的图像不支持轮子包 pandasnumpy。这就是为什么我们在构建过程中使用 python pip 安装它们时,总是从 alpine 中的源文件编译它们:

  Downloading pandas-0.22.0.tar.gz (11.3MB)
Downloading numpy-1.14.1.zip (4.9MB)

在镜像构建过程中,我们可以看到容器内部如下:

/ # ps aux
PID USER TIME COMMAND
1 root 0:00 /bin/sh -c pip install pandas
7 root 0:04 {pip} /usr/local/bin/python /usr/local/bin/pip install pandas
21 root 0:07 /usr/local/bin/python -c import setuptools, tokenize;__file__='/tmp/pip-build-en29h0ak/pandas/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n
496 root 0:00 sh
660 root 0:00 /bin/sh -c gcc -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -DTHREAD_STACK_SIZE=0x100000 -fPIC -Ibuild/src.linux-x86_64-3.6/numpy/core/src/pri
661 root 0:00 gcc -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -DTHREAD_STACK_SIZE=0x100000 -fPIC -Ibuild/src.linux-x86_64-3.6/numpy/core/src/private -Inump
662 root 0:00 /usr/libexec/gcc/x86_64-alpine-linux-musl/6.4.0/cc1 -quiet -I build/src.linux-x86_64-3.6/numpy/core/src/private -I numpy/core/include -I build/src.linux-x86_64-3.6/numpy/core/includ
663 root 0:00 ps aux

如果我们稍微修改一下Dockerfile:

FROM python:3.6.4-alpine3.7
RUN apk add --no-cache g++ wget
RUN wget https://pypi.python.org/packages/da/c6/0936bc5814b429fddb5d6252566fe73a3e40372e6ceaf87de3dec1326f28/pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl
RUN pip install pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl

我们得到以下错误:

Step 4/4 : RUN pip install pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl
---> Running in 0faea63e2bda
pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl is not a supported wheel on this platform.
The command '/bin/sh -c pip install pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl' returned a non-zero code: 1

不幸的是,在 Alpine 镜像上安装 pandas 的唯一方法是等到构建完成。

当然,例如,如果您想在 CI 中使用带有 pandas 的 Alpine 镜像,最好的方法是编译一次,将其推送到任何注册表并用作基础图片满足您的需求。

编辑:如果你想在 pandas 中使用 Alpine 图像,你可以拉我的 nickgryg/alpine-pandas docker 形象。它是一个在 Alpine 平台上预编译了 pandas 的 python 镜像。它应该可以节省您的时间。

关于pandas - 为什么在 Alpine Linux 上安装 Pandas 需要很长时间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49037742/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com