- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我有一个约 300K 行和约 40 列的数据框。我想知道是否有任何行包含空值 - 并将这些“空”行放入单独的数据框中,以便我可以轻松地探索它们。
我可以显式地创建一个掩码:
mask = False
for col in df.columns:
mask = mask | df[col].isnull()
dfnulls = df[mask]
或者我可以这样做:
df.ix[df.index[(df.T == np.nan).sum() > 1]]
有没有更优雅的方法(定位带有空值的行)?
最佳答案
[已更新以适应现代pandas
,其中isnull
作为DataFrame
s..的方法]
您可以使用 isnull
和 any
构建一个 bool 系列并使用它来索引到您的框架:
>>> df = pd.DataFrame([range(3), [0, np.NaN, 0], [0, 0, np.NaN], range(3), range(3)])
>>> df.isnull()
0 1 2
0 False False False
1 False True False
2 False False True
3 False False False
4 False False False
>>> df.isnull().any(axis=1)
0 False
1 True
2 True
3 False
4 False
dtype: bool
>>> df[df.isnull().any(axis=1)]
0 1 2
1 0 NaN 0
2 0 0 NaN
[对于较旧的pandas
:]
您可以使用函数 isnull
代替方法:
In [56]: df = pd.DataFrame([range(3), [0, np.NaN, 0], [0, 0, np.NaN], range(3), range(3)])
In [57]: df
Out[57]:
0 1 2
0 0 1 2
1 0 NaN 0
2 0 0 NaN
3 0 1 2
4 0 1 2
In [58]: pd.isnull(df)
Out[58]:
0 1 2
0 False False False
1 False True False
2 False False True
3 False False False
4 False False False
In [59]: pd.isnull(df).any(axis=1)
Out[59]:
0 False
1 True
2 True
3 False
4 False
导致相当紧凑:
In [60]: df[pd.isnull(df).any(axis=1)]
Out[60]:
0 1 2
1 0 NaN 0
2 0 0 NaN
关于python - 如何在不明确列出列的情况下从 pandas DataFrame 中选择具有一个或多个空值的行?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14247586/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!