- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我正在尝试在我正在开发的应用中实现心跳记录功能。
这样做的首选方法是使用 iPhone 的摄像头打开灯,让用户将手指放在镜头上,并检测视频输入中的波动,这与用户的心脏相对应。
我从以下堆栈溢出问题中找到了一个很好的起点 here
该问题提供了有用的代码来绘制心跳时间图。
它展示了如何启动一个 AVCaptureSession 并像这样打开相机的灯:
session = [[AVCaptureSession alloc] init];
AVCaptureDevice* camera = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
if([camera isTorchModeSupported:AVCaptureTorchModeOn]) {
[camera lockForConfiguration:nil];
camera.torchMode=AVCaptureTorchModeOn;
// camera.exposureMode=AVCaptureExposureModeLocked;
[camera unlockForConfiguration];
}
// Create a AVCaptureInput with the camera device
NSError *error=nil;
AVCaptureInput* cameraInput = [[AVCaptureDeviceInput alloc] initWithDevice:camera error:&error];
if (cameraInput == nil) {
NSLog(@"Error to create camera capture:%@",error);
}
// Set the output
AVCaptureVideoDataOutput* videoOutput = [[AVCaptureVideoDataOutput alloc] init];
// create a queue to run the capture on
dispatch_queue_t captureQueue=dispatch_queue_create("catpureQueue", NULL);
// setup our delegate
[videoOutput setSampleBufferDelegate:self queue:captureQueue];
// configure the pixel format
videoOutput.videoSettings = [NSDictionary dictionaryWithObjectsAndKeys:[NSNumber numberWithUnsignedInt:kCVPixelFormatType_32BGRA], (id)kCVPixelBufferPixelFormatTypeKey,
nil];
videoOutput.minFrameDuration=CMTimeMake(1, 10);
// and the size of the frames we want
[session setSessionPreset:AVCaptureSessionPresetLow];
// Add the input and output
[session addInput:cameraInput];
[session addOutput:videoOutput];
// Start the session
[session startRunning];
本例中的self必须是<AVCaptureVideoDataOutputSampleBufferDelegate>
因此必须实现以下方法来获取原始相机数据:
- (void)captureOutput:(AVCaptureOutput *)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection {
static int count=0;
count++;
// only run if we're not already processing an image
// this is the image buffer
CVImageBufferRef cvimgRef = CMSampleBufferGetImageBuffer(sampleBuffer);
// Lock the image buffer
CVPixelBufferLockBaseAddress(cvimgRef,0);
// access the data
int width=CVPixelBufferGetWidth(cvimgRef);
int height=CVPixelBufferGetHeight(cvimgRef);
// get the raw image bytes
uint8_t *buf=(uint8_t *) CVPixelBufferGetBaseAddress(cvimgRef);
size_t bprow=CVPixelBufferGetBytesPerRow(cvimgRef);
float r=0,g=0,b=0;
for(int y=0; y<height; y++) {
for(int x=0; x<width*4; x+=4) {
b+=buf[x];
g+=buf[x+1];
r+=buf[x+2];
// a+=buf[x+3];
}
buf+=bprow;
}
r/=255*(float) (width*height);
g/=255*(float) (width*height);
b/=255*(float) (width*height);
float h,s,v;
RGBtoHSV(r, g, b, &h, &s, &v);
// simple highpass and lowpass filter
static float lastH=0;
float highPassValue=h-lastH;
lastH=h;
float lastHighPassValue=0;
float lowPassValue=(lastHighPassValue+highPassValue)/2;
lastHighPassValue=highPassValue;
//low pass value can now be used for basic heart beat detection
}
RGB 被转换为 HSV,并且监控的是 Hue 的波动。
而RGB转HSV的实现如下
void RGBtoHSV( float r, float g, float b, float *h, float *s, float *v ) {
float min, max, delta;
min = MIN( r, MIN(g, b ));
max = MAX( r, MAX(g, b ));
*v = max;
delta = max - min;
if( max != 0 )
*s = delta / max;
else {
// r = g = b = 0
*s = 0;
*h = -1;
return;
}
if( r == max )
*h = ( g - b ) / delta;
else if( g == max )
*h=2+(b-r)/delta;
else
*h=4+(r-g)/delta;
*h *= 60;
if( *h < 0 )
*h += 360;
}
capureOutput:
中计算的低通值最初提供不稳定的数据,但随后稳定到以下:
2013-11-04 16:18:13.619 SampleHeartRateApp[1743:1803] -0.071218
2013-11-04 16:18:13.719 SampleHeartRateApp[1743:1803] -0.050072
2013-11-04 16:18:13.819 SampleHeartRateApp[1743:1803] -0.011375
2013-11-04 16:18:13.918 SampleHeartRateApp[1743:1803] 0.018456
2013-11-04 16:18:14.019 SampleHeartRateApp[1743:1803] 0.059024
2013-11-04 16:18:14.118 SampleHeartRateApp[1743:1803] 0.052198
2013-11-04 16:18:14.219 SampleHeartRateApp[1743:1803] 0.078189
2013-11-04 16:18:14.318 SampleHeartRateApp[1743:1803] 0.046035
2013-11-04 16:18:14.419 SampleHeartRateApp[1743:1803] -0.113153
2013-11-04 16:18:14.519 SampleHeartRateApp[1743:1803] -0.079792
2013-11-04 16:18:14.618 SampleHeartRateApp[1743:1803] -0.027654
2013-11-04 16:18:14.719 SampleHeartRateApp[1743:1803] -0.017288
最初提供的不稳定数据的示例如下:
2013-11-04 16:17:28.747 SampleHeartRateApp[1743:3707] 17.271435
2013-11-04 16:17:28.822 SampleHeartRateApp[1743:1803] -0.049067
2013-11-04 16:17:28.922 SampleHeartRateApp[1743:1803] -6.524201
2013-11-04 16:17:29.022 SampleHeartRateApp[1743:1803] -0.766260
2013-11-04 16:17:29.137 SampleHeartRateApp[1743:3707] 9.956407
2013-11-04 16:17:29.221 SampleHeartRateApp[1743:1803] 0.076244
2013-11-04 16:17:29.321 SampleHeartRateApp[1743:1803] -1.049292
2013-11-04 16:17:29.422 SampleHeartRateApp[1743:1803] 0.088634
2013-11-04 16:17:29.522 SampleHeartRateApp[1743:1803] -1.035559
2013-11-04 16:17:29.621 SampleHeartRateApp[1743:1803] 0.019196
2013-11-04 16:17:29.719 SampleHeartRateApp[1743:1803] -1.027754
2013-11-04 16:17:29.821 SampleHeartRateApp[1743:1803] 0.045803
2013-11-04 16:17:29.922 SampleHeartRateApp[1743:1803] -0.857693
2013-11-04 16:17:30.021 SampleHeartRateApp[1743:1803] 0.061945
2013-11-04 16:17:30.143 SampleHeartRateApp[1743:1803] -0.701269
只要有心跳,低通值就会变为正值。所以我尝试了一个非常简单的活体检测算法,它基本上是看当前值,如果是正值,它也会查看之前的值,如果是负值,它会检测到负值变为正值并发出哔声。
问题在于数据并不总是像上面那样完美,有时在负读数中会出现异常的正读数,反之亦然。
低通值的时间图如下所示:
有趣的是,上述异常很常见,如果我记录一段时间的图表,我会多次看到形状非常相似的异常。
在我非常简单的节拍检测算法中,如果出现如上所示的异常情况,则检测期间(10 秒)内的节拍计数可以增加 4 或 5 次。这使得计算的 BPM 非常不准确。但尽管它很简单,但它确实在大约 70% 的时间里工作。
为了解决这个问题,我尝试了以下方法。
1.开始在数组中记录最后3个低通值
2.然后查看中间值前后是否有两个较小的值。 (基本峰值检测)
3.将此场景计为一个节拍,并将其添加到给定时间内的运行节拍总数中。
然而,这种方法和其他任何方法一样容易受到异常的影响。实际上似乎是一种更糟糕的方法。 (在检测后播放实时哔哔声时,它们似乎比正负算法更不稳定)
我的问题是你能不能帮我想出一个算法,该算法能够以合理的准确度可靠地检测心跳的发生时间。
我意识到我必须解决的另一个问题是检测用户的手指是否在镜头上。
我想过检测不稳定的低通值,但问题是低通滤波器会解释不稳定的值并随着时间的推移将它们平滑掉。因此,我们也将不胜感激。
感谢您的宝贵时间。
最佳答案
这个问题的答案有点复杂,因为您需要做几件事来处理信号,并且没有单一的“正确”方法可以做到这一点。但是,对于您的过滤器,您想使用 band-pass filter .这种类型的滤波器允许您指定在高端和低端都接受的频率范围。对于人类的心跳,我们知道这些界限应该是多少(不低于 40 bpm 且不高于 250 bpm),因此我们可以创建一个过滤器来去除该范围之外的频率。该过滤器还将数据移动到以零为中心,因此峰值检测变得更加容易。即使您的用户增加/减少他们的手指压力(在一定程度上),此过滤器也会为您提供更平滑的信号。之后,还需要进行额外的平滑和异常值移除。
我使用的一种特定类型的带通滤波器是巴特沃斯滤波器。这有点涉及手动创建,因为过滤器会根据您收集数据的频率而变化。幸运的是,有一个网站可以提供帮助 here .如果您以 30 fps 的速度收集数据,那么频率将为 30 hz。
我创建了一个项目,将所有这些都封装在一起,并且可以很好地检测用户的心率,以便将其包含在我在 iOS 应用商店上的应用中。我已在 github 上提供了心率检测代码.
关于iOS 心率检测算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19773631/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!