gpt4 book ai didi

RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 128 but got size 256.I always get "mismatch error:" Always factor of 2(运行时错误:除维度%1外,张量的大小必须匹配。预期大小为128,但得到的大小为256。我总是收到“不匹配错误:”始终为2的系数)

转载 作者:bug小助手 更新时间:2023-10-28 10:18:01 29 4
gpt4 key购买 nike



I have this code:

我有这样的代码:


import logging
import os
import sys
import tempfile
from glob import glob

import torch
from torch.cuda.amp import autocast, GradScaler
from PIL import Image
from torch.utils.tensorboard import SummaryWriter

import monai
from monai.data import create_test_image_2d, list_data_collate, decollate_batch, DataLoader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
EnsureChannelFirstd,
Compose,
ScaleIntensityd,
ToTensor,
DivisiblePadd,
AsDiscrete
)
from monai.visualize import plot_2d_or_3d_image


def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Check and convert data format only once
converted_raw_dict, converted_analyzed_dict = check_and_convert_format(updated_raw_dict, new_analyzed_dict)

# Check if the dictionaries contain the same length or not, then create train val test:
if len(converted_raw_dict) != len(converted_analyzed_dict):
raise ValueError("The lengths of converted_raw_dict and converted_analyzed_dict do not match.")

num_images = len(converted_raw_dict)

# Calculate the number of images for training, validation, and test, e.g., using an 80-10-10 split
raw_image_list = list(converted_raw_dict.items())
analyzed_image_list = list(converted_analyzed_dict.items())

# Calculate the number of images for training, validation, and test
train_percentage = 0.8
val_percentage = 0.1
num_images = len(raw_image_list)
num_train_images = int(num_images * train_percentage)
num_val_images = int(num_images * val_percentage)

# Select images for training, validation, and test
train_files = [{"img": image, "seg": converted_analyzed_dict[name]} for name, image in raw_image_list[:num_train_images]]
val_files = [{"img": image, "seg": converted_analyzed_dict[name]} for name, image in raw_image_list[num_train_images:num_train_images + num_val_images]]
test_files = [{"img": image, "seg": converted_analyzed_dict[name]} for name, image in raw_image_list[num_train_images + num_val_images:]]

# define transforms for image and segmentation
train_transforms = Compose(
[
ToTensor(),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1), # Use channel_dim=-1 for NumPy arrays
ScaleIntensityd(keys=["img", "seg"]),
DivisiblePadd(keys=["img", "seg"],k=16),
]
)
val_transforms = Compose(
[
ToTensor(),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1), # Use channel_dim=-1 for NumPy arrays
ScaleIntensityd(keys=["img", "seg"]),
DivisiblePadd(keys=["img", "seg"],k=16),

]
)

# define dataset, data loader
check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
check_loader = DataLoader(check_ds, batch_size=1, num_workers=1, collate_fn=list_data_collate)
check_data = monai.utils.misc.first(check_loader)
print(check_data["img"].shape, check_data["seg"].shape)

# create a training data loader
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=1,
shuffle=True,
num_workers=1,
collate_fn=list_data_collate,
pin_memory=torch.cuda.is_available(),
)
# create a validation data loader
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Print the shape of your input image for debugging
#input_image_shape = train_files[0]["img"].shape
#print("Input image shape:", input_image_shape)

model = monai.networks.nets.UNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
loss_function = monai.losses.DiceLoss(sigmoid=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)

# start a typical PyTorch training
val_interval = 5
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
# Define the number of mini-batches to accumulate gradients over
accumulation_steps = 4 # You can adjust this value based on your GPU memory capacity
scaler = GradScaler()
for epoch in range(10):
print("-" * 10)
print(f"epoch {epoch + 1}/{10}")
model.train()
epoch_loss = 0
step = 0
accumulated_loss = 0 # Initialize accumulated loss
for batch_data in train_loader:
step += 1
inputs, labels = batch_data["img"].to(device), batch_data["seg"].to(device)
optimizer.zero_grad()
with autocast():
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss /= accumulation_steps

scaler.scale(loss).backward()

if step % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
epoch_loss += accumulated_loss.item() # Accumulated loss for logging
accumulated_loss = 0 # Reset accumulated loss

else:
accumulated_loss += loss # Accumulate the loss

epoch_len = len(train_ds) // (train_loader.batch_size * accumulation_steps)
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)

# Handle any remaining accumulated loss
if step % accumulation_steps != 0:
optimizer.step()
epoch_loss += accumulated_loss.item()

epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
val_images = None
val_labels = None
val_outputs = None
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
roi_size = (64, 64)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
# compute metric for current iteration
dice_metric(y_pred=val_outputs, y=val_labels)
# aggregate the final mean dice result
metric = dice_metric.aggregate().item()
# reset the status for next validation round
dice_metric.reset()
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), "best_metric_model_segmentation2d_dict.pth")
print("saved new best metric model")
print(
"current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
writer.add_scalar("val_mean_dice", metric, epoch + 1)

# Print the shape of inputs, labels, and outputs
print("Input shape:", inputs.shape)
print("Label shape:", labels.shape)
print("Output shape:", outputs.shape)

# plot the last model output as GIF image in TensorBoard with the corresponding image and label
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag="image")
plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag="label")
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag="output")

print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()


if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)

I have these tensors for my network: torch.Size([1, 1536, 1152]) torch.Size([1, 1536, 1152]).

我的网络有以下张量:Torch.Size([1,1536,1152])Torch.Size([1,1536,1152])。


But I always get the runtime error:

但我总是收到运行时错误:


RuntimeError: Sizes of tensors must match except in dimension 1.
Expected size 128 but got size 256 for tensor number 1 in the list.

If I change my channel sizes, say I multiplied them by 2, I get Expected size 256 but got size 512 in that case. I am pretty sure I am making an obvious mistake but I could not find what specifically.

如果我改变我的频道大小,比方说我把它们乘以2,我得到了预期的256大小,但在这种情况下得到了512大小。我很确定我犯了一个明显的错误,但我找不到具体的错误。


I have been trying to test a simple UNet with using Monai and Google Colab, but I am having tensor shape mismatch error. I just tried to train a network into overfitting with little images so that I know I am on te right track. But having either syntax or network architecture related issues. Could not fix it. I changed channels=(16, 32, 64, 128, 256) into channels=(32, 64, 128, 256, 512) or any other multiple, but got thhe same runtimeerror, just with different values as size and expected size.

我一直试图使用Monai和Google Colab测试一个简单的UNET,但我遇到了张量形状不匹配错误。我只是试着训练一个网络,让它过度适应小图片,这样我就知道我走在了正确的轨道上。但是具有与语法或网络架构相关的问题。无法修复它。我将Channels=(16,32,64,128,256)更改为Channels=(32,64,128,256,512)或任何其他倍数,但得到相同的运行时错误,只是大小和预期大小的值不同。


更多回答
优秀答案推荐

it is the dimension problem of the input data.

这是输入数据的维度问题。


inputs and labels shoud not have three dimension.

输入和标签不应是三维的。


the dimesion should be torch.Size([1, 1, 1536, 1152]) torch.Size([1, 1, 1536, 1152]) if the batch size is 1.

如果批量大小为1,则维度应为Torch.Size([1,1,1536,1152])Torch.Size([1,1,1536,1152])。


or torch.Size([10, 1, 1536, 1152]) torch.Size([10, 1, 1536, 1152]) if the batch size is 10.

或Torch.Size([10,1,1536,1152])Torch.Size([10,1,1536,1152]),如果批量大小为10。


you forget the batch dimension in the first dimension.

在第一个维度中忘记了批次维度。


the codes below works fine

下面的代码工作正常


import logging
import os
import sys
import tempfile
from glob import glob

import torch
from torch.cuda.amp import autocast, GradScaler
from PIL import Image
from torch.utils.tensorboard import SummaryWriter

import monai

def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = monai.networks.nets.UNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
loss_function = monai.losses.DiceLoss(sigmoid=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)

# start a typical PyTorch training
val_interval = 5
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
# Define the number of mini-batches to accumulate gradients over
accumulation_steps = 4 # You can adjust this value based on your GPU memory capacity
scaler = GradScaler()
for epoch in range(10):
print("-" * 10)
print(f"epoch {epoch + 1}/{10}")
model.train()
epoch_loss = 0
step = 0
accumulated_loss = 0 # Initialize accumulated loss
# for batch_data in train_loader:
if True:
step += 1
# inputs, labels = batch_data["img"].to(device), batch_data["seg"].to(device)
inputs = torch.zeros((1, 1, 1536, 1152)).to(device)
labels = torch.zeros((1, 1, 1536, 1152)).to(device)
optimizer.zero_grad()
with autocast():
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss /= accumulation_steps
exit(0)


if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)

更多回答

Issue was definitely my data shape. Thank you for the help. It is solved via passing "no_channel" argument into the pre-processing so that monai knows how to handle the shape of my data.

问题绝对是我的数据形状。谢谢你的帮助。它是通过将“no_Channel”参数传递到预处理中来解决的,这样Monai就知道如何处理我的数据的形状。

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com