I'm trying to get the shadow values of the constraints in the 'for' loop:
我正在尝试获取‘for’循环中约束的阴影值:
using JuMP
using GLPK
CI = [30, 70];
d = 170;
Pmin = [ 0, 0];
Pmax = [100, 150];
N = length(CI)
m = Model(GLPK.Optimizer)
@variable(m, 0 <= P[1:N] )
@objective(m, Min, sum(CI[i] * P[i] for i in 1:N))
@constraint(m, c1, sum(P[1:N]) == d)
for i in 1:N
@constraint(m, Pmin[i] <= P[i] <= Pmax[i])
end
optimize!(m)
Does anyone know how to make it print the shadow value of all constraints? D:
有没有人知道如何让它打印所有约束的阴影值?D:
I was trying to develop a economic dispatch problem (I'm new on Julia)
我正试图解决一个经济调度问题(我对朱莉娅是新手)
更多回答
优秀答案推荐
Option 1: use the specialized JuMP syntax to create a container:
选项1:使用专门的跳转语法创建容器:
@constraint(m, c2[i in 1:N], Pmin[i] <= P[i] <= Pmax[i])
dual.(c2)
Option 2: use Julia
选项2:使用Julia
c2 = Any[]
for i in 1:N
push!(c2, @constraint(m, Pmin[i] <= P[i] <= Pmax[i]))
end
dual.(c2)
I'd actually write your model differently though:
不过,我实际上会用不同的方式来写你的模型:
using JuMP
using HiGHS
CI = [30.0, 70.0]
d = 170
Pmin = [0.0, 0.0]
Pmax = [100.0, 150.0]
N = length(CI)
model = Model(HiGHS.Optimizer)
@variable(model, Pmin[i] <= P[i = 1:N] <= Pmax[i])
@objective(model, Min, CI' * P)
@constraint(model, c1, sum(P) == d)
optimize!(model)
reduced_cost.(P)
I was trying to develop a economic dispatch problem
You might be interested in the tutorial:
您可能会对本教程感兴趣:
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/#Economic-dispatch
Https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/#Economic-dispatch
(I'm new on Julia)
Hi there! The other place to get help for JuMP/Julia related things is http://jump.dev/forum. It's a bit easier to have a back-and-forth conversation there if you have more questions than StackOverflow.
嗨你好啊!另一个获得JUMP/Julia相关内容帮助的地方是http://jump.dev/forum.如果你有比StackOverflow更多的问题,在那里来回交谈会更容易一些。
更多回答
我是一名优秀的程序员,十分优秀!