- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问.
学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅.
本文是 LeetCode 上分之旅系列的第 49 篇文章,往期回顾请移步到文章末尾~ 。
T1. 有序三元组中的最大值 I(Easy) 。
T2. 有序三元组中的最大值 II(Medium) 。
T3. 无限数组的最短子数组(Medium) 。
T4. 有向图访问计数(Hard) 。
https://leetcode.cn/problems/maximum-value-of-an-ordered-triplet-i/description/
同 T2.
https://leetcode.cn/problems/maximum-value-of-an-ordered-triplet-ii/description/
初步分析:
思考实现:
思考优化:
为了使得计算结果尽可能大,显然应该让乘法的左右两部分尽可能大。对于存在多个变量的问题,一个重要的技巧是 「固定一个,思考另一个」 ,这就容易多了.
枚举所有方案,记录最优解.
class Solution {
fun maximumTripletValue(nums: IntArray): Long {
var ret = 0L
val n = nums.size
for (i in 0 until n) {
for (j in i + 1 until n) {
for (k in j + 1 until n) {
ret = max(ret, 1L * (nums[i] - nums[j]) * nums[k])
}
}
}
return ret
}
}
复杂度分析:
预处理出每个位置前后的最大值,再枚举 $nums[j]$ 记录最优解.
class Solution {
fun maximumTripletValue(nums: IntArray): Long {
val n = nums.size
val preMax = IntArray(n)
var sufMax = IntArray(n)
for (i in 1 until n) {
preMax[i] = max(preMax[i - 1], nums[i - 1])
}
for (i in n - 2 downTo 0) {
sufMax[i] = max(sufMax[i + 1], nums[i + 1])
}
return max(0, (1 .. n - 2).maxOf { 1L * (preMax[it] - nums[it]) * sufMax[it] })
}
}
复杂度分析:
线性遍历 $nums[k]$ 并记录 $(nums[i] - nums[j])$ 的最大值,记录最优解.
class Solution {
fun maximumTripletValue(nums: IntArray): Long {
val n = nums.size
var ret = 0L
var maxDelta = 0
var maxI = 0
for (e in nums) {
ret = max(ret, 1L * maxDelta * e)
maxDelta = max(maxDelta, maxI - e)
maxI = max(maxI, e)
}
return ret
}
}
class Solution:
def maximumTripletValue(self, nums: List[int]) -> int:
ret = maxDelta = maxI = 0
for e in nums:
ret = max(ret, maxDelta * e)
maxDelta = max(maxDelta, maxI - e)
maxI = max(maxI, e)
return ret
class Solution {
public:
long long maximumTripletValue(vector<int> &nums) {
long long ret = 0;
int max_delta = 0, max_i = 0;
for (int e : nums) {
ret = max(ret, (long long) max_delta * e);
max_delta = max(max_delta, max_i - e);
max_i = max(max_i, e);
}
return ret;
}
};
复杂度分析:
https://leetcode.cn/problems/minimum-size-subarray-in-infinite-array/description/
令 $nums$ 数组的整体元素和为 $s$,考虑 $target$ 的两种情况:
class Solution {
fun minSizeSubarray(nums: IntArray, t: Int): Int {
val n = nums.size
val s = nums.sum()
val k = t % s
// 同向双指针
var left = 0
var sum = 0
var len = n
for (right in 0 until 2 * n) {
sum += nums[right % n]
while (sum > k) {
sum -= nums[left % n]
left ++
}
if (sum == k) len = min(len, right - left + 1)
}
return if (len == n) -1 else n * (t / s) + len
}
}
复杂度分析:
https://leetcode.cn/problems/count-visited-nodes-in-a-directed-graph/description/
初步分析:
对于 $n$ 个点 $n$ 条边的有向弱连通图,图中每个点的出度都是 $1$,因此它是一棵 「内向基环树」 。那么,对于每个点有 $2$ 种情况:
图片不记得出处了~ 。
思考实现:
拓扑排序减去树链很容易实现,考虑到我们这道题在找到基环后需要反向遍历树链,因此我们考虑构造反向图(外向基环树); 。
在拓扑排序后,树链上节点的入度都是 $0$,因此入度大于 $0$ 的节点就位于基环上。枚举未访问的基环节点走 DFS,就可以找到该连通分量的基环.
class Solution {
fun countVisitedNodes(edges: List<Int>): IntArray {
// 内向基环树
val n = edges.size
val degree = IntArray(n)
val graph = Array(n) { LinkedList<Int>() }
for ((x,y) in edges.withIndex()) {
graph[y].add(x)
degree[y]++ // 入度
}
// 拓扑排序
val ret = IntArray(n)
var queue = LinkedList<Int>()
for (i in 0 until n) {
if (0 == degree[i]) queue.offer(i)
}
while(!queue.isEmpty()) {
val x = queue.poll()
val y = edges[x]
if (0 == -- degree[y]) queue.offer(y)
}
// 反向 DFS
fun rdfs(i: Int, depth: Int) {
for (to in graph[i]) {
if (degree[to] == -1) continue
ret[to] = depth
rdfs(to, depth + 1)
}
}
// 枚举连通分量
for (i in 0 until n) {
if (degree[i] <= 0) continue
val ring = LinkedList<Int>()
var x = i
while (true) {
degree[x] = -1
ring.add(x)
x = edges[x]
if (x == i) break
}
for (e in ring) {
ret[e] = ring.size
rdfs(e, ring.size + 1)
}
}
return ret
}
}
复杂度分析:
思路参考小羊的题解.
我们发现这道题的核心在于 「找到每个基环的节点」 ,除了拓扑排序剪枝外,对于内向基环树来,从任何一个节点走 DFS 走到的最后一个节点一定是基环上的节点.
在细节上,对于每个未访问过的节点走 DFS 的结果会存在 $3$ 种情况:
class Solution {
fun countVisitedNodes(edges: List<Int>): IntArray {
val n = edges.size
val ret = IntArray(n)
val visit = BooleanArray(n)
for (i in 0 until n) {
if (visit[i]) continue
// DFS
val link = LinkedList<Int>()
var x = i
while (!visit[x]) {
visit[x] = true
link.add(x)
x = edges[x]
}
if (ret[x] == 0) {
val depth = link.size - link.indexOf(x) // (此时 x 位于基环入口)
repeat(depth) {
ret[link.pollLast()] = depth
}
}
var depth = ret[x]
while (!link.isEmpty()) {
ret[link.pollLast()] = ++depth
}
}
return ret
}
}
复杂度分析:
推荐阅读
LeetCode 上分之旅系列往期回顾:
- LeetCode 单周赛第 364 场 · 前后缀分解结合单调栈的贡献问题
- LeetCode 单周赛第 363 场 · 经典二分答案与质因数分解
- LeetCode 双周赛第 114 场 · 一道简单的树上动态规划问题
- LeetCode 双周赛第 113 场 · 精妙的 O(lgn) 扫描算法与树上 DP 问题
⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~ 。
最后此篇关于LeetCode周赛上分之旅#49再探内向基环树的文章就讲到这里了,如果你想了解更多关于LeetCode周赛上分之旅#49再探内向基环树的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
经过几个小时的(重新)搜索,我无法想出普通抽象类和使用模板模式之间的可解释区别。 我唯一看到的是: 使用抽象类时,您需要实现所有方法。但是在使用模板方法时,您只需要实现这两个抽象方法。 有人可以向我解
我正在尝试实现一种算法,该算法可找到以下形状给出的外多边形的每个单独边的对应区域。也就是说,1,2 边的相应区域是 [1,6,7,8,2],2,3 边的区域是 [2,8,3] 等等,CCW 或 CW
我正在尝试在派生 self 的 BaseController 类的任何 Controller 上自动设置一个属性。这是我的 Application_Start 方法中的代码。 UnitOfWork 属
我正在使用 mgcv 包通过以下方式将一些多项式样条拟合到一些数据: x.gam smooth$knots [1] -0.081161 -0.054107 -0.027053 0.000001
考虑以下代码: void foo(){ ..... } int main() { int arr[3][3] ; char string[10]; foo();
本书The c++ programming language有这个代码: class BB_ival_slider : public Ival_slider, protected BBslider {
是否有一个 package.json 属性可用于指定模块解析应启动的根文件夹? 例如,假设我们在 node_modules/mypackage/src/file1 中有一个安装。我们要导入的所有文件都
我正在尝试使用聚合函数来实现与 SQL 查询相同的结果: 查询语句: sqldf(" SELECT PhotoID, UserID,
我正在比较使用 LOESS 回归的两条线。我想清楚地显示两条线的置信区间,我遇到了一些困难。 我尝试过使用各种线型和颜色,但在我看来,结果仍然是忙碌和凌乱。我认为置信区间之间的阴影可能会使事情变得更清
给定这段代码 public override void Serialize(BaseContentObject obj) { string file = ObjectDataStoreFold
我正在构建某种工厂方法,它按以下方式将 DerivedClass 作为 BaseClass 返回: BaseClass Factory() { return DerivedClass(); }
当重写 class delegation 实现的接口(interface)方法时,是否可以调用通常从重写函数中委托(delegate)给的类?类似于使用继承时调用 super 的方式。 来自docum
我有一个基类 fragment (如下所示)。我在其他 3 个 fragment 类中扩展了此类,每个类都共享需要在这 3 个 fragment 中访问的相同 EditText。因此,我在基类中设置了
如何在不加载额外库的情况下在 R 中计算两个排列之间的 Kendall tau 距离(又名冒泡排序距离)? 最佳答案 这是一个 O(n.log(n)) 的实现,在阅读后拼凑而成,但我怀疑可能有更好的
情况 我创建了一个具有国际化 (i18n) 的 Angular 应用程序。我想在子域中托管不同的版本,例如: zh.myexample.com es.myexample.com 问题 当我使用命令 n
std::is_base_of 之间的唯一区别和 std::is_convertible是前者在 Base 时也成立是 私有(private)或 protected Derived 的基类.但是,您何
我创建了一个名为 baseviewcontroller 的父类(super class) uiviewcontroller 类,用于包含大多数应用屏幕所需的基本 UI。它包括一个自定义导航栏和一个“自
我是一名优秀的程序员,十分优秀!