- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
博客地址: https://www.cnblogs.com/zylyehuo/ 。
import numpy as np
import pandas as pd
from pandas import DataFrame
df = DataFrame(data=np.random.randint(0,100,size=(5,6)))
df
df.replace(to_replace=0,value='Zero')
df.replace(to_replace={10:'Ten'})
# 将指定列的元素进行替换to_replase={列索引:被替换的值}
df.replace(to_replace={3:0},value='Zero')
dic = {
'name':['张三','李四','张三'],
'salary':[15000,20000,15000]
}
df = DataFrame(data=dic)
df
# 映射关系表
dic = {
'张三':'tom',
'李四':'jack'
}
# map是Series的方法,只能被Series调用
df['e_name'] = df['name'].map(dic)
df
# 该函数是我们指定的一个运算法则
def after_sal(s):#计算s对应的税后薪资
return s - (s-3000)*0.5
# map是Series的方法,只能被Series调用
df['after_sal'] = df['salary'].map(after_sal) # 可以将df['salary']这个Series中每一个元素(薪资)作为参数传递给s
df
df = DataFrame(data=np.random.randint(0,100,size=(100,3)),columns=['A','B','C'])
df
# 生成乱序的随机序列
np.random.permutation(10)
array([8, 9, 6, 2, 5, 3, 1, 0, 7, 4])
# [2,0,1] 只能使用隐式索引
# df.take([2,0,1],axis=1)
df.take(np.random.permutation(3),axis=1)
df.take(np.random.permutation(3),axis=1).take(np.random.permutation(100),axis=0)[0:50]
df.take(np.random.permutation(3),axis=1).take(np.random.permutation(100),axis=0)[0:50].head()
df = DataFrame({'item':['Apple','Banana','Orange','Banana','Orange','Apple'],
'price':[4,3,3,2.5,4,2],
'color':['red','yellow','yellow','green','green','green'],
'weight':[12,20,50,30,20,44]})
df
# 对水果的种类进行分类
df.groupby(by='item')
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000290D4BAA910>
df.groupby(by='item').groups
{'Apple': [0, 5], 'Banana': [1, 3], 'Orange': [2, 4]}
df.groupby(by='item')['price'].mean()
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
df.groupby(by='color')['weight'].mean()
color
green 31.333333
red 12.000000
yellow 35.000000
Name: weight, dtype: float64
dic = df.groupby(by='color')['weight'].mean().to_dict()
dic
{'green': 31.333333333333332, 'red': 12.0, 'yellow': 35.0}
df['mean_w'] = df['color'].map(dic)
df
def my_mean(s):
m_sum = 0
for i in s:
m_sum += i
return m_sum / len(s)
df.groupby(by='item')['price'].transform(my_mean) # 返回的是经过映射的结果
0 3.00
1 2.75
2 3.50
3 2.75
4 3.50
5 3.00
Name: price, dtype: float64
df.groupby(by='item')['price'].apply(my_mean) # 返回的是未经过映射的结果
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
df = pd.read_csv('./data/type-.txt')
df
df.shape
(2, 1)
pd.read_csv('./data/type-.txt',header=None,sep='-')
import sqlite3 as sqlite3
conn = sqlite3.connect('./data/weather_2012.sqlite')
sql_df=pd.read_sql('select * from weather_2012',conn)
sql_df
df.to_sql('sql_data456',conn)
2
import pandas as pd
import numpy as np
df = pd.read_csv('./data/透视表-篮球赛.csv',encoding='utf8')
df
df.pivot_table(index=['对手','主客场'])
df.pivot_table(index=['主客场','胜负'],values=['得分','篮板','助攻'])
df.pivot_table(index=['主客场','胜负'],values=['得分','篮板','助攻'],aggfunc='sum')
# 获取所有队主客场的总得分
df.pivot_table(index='主客场',values='得分',aggfunc='sum')
# 获取每个队主客场的总得分(在总得分的基础上又进行了对手的分类)
# fill_value=0 空值补0
df.pivot_table(index='主客场',values='得分',columns='对手',aggfunc='sum',fill_value=0)
import pandas as pd
from pandas import DataFrame
df = DataFrame({'sex':['man','man','women','women','man','women','man','women','women'],
'age':[15,23,25,17,35,57,24,31,22],
'smoke':[True,False,False,True,True,False,False,True,False],
'height':[168,179,181,166,173,178,188,190,160]})
df
# pd.crosstab(行索引,列索引)
pd.crosstab(df.smoke,df.sex)
pd.crosstab(df.age,df.smoke)
最后此篇关于pandas(进阶操作)--处理非数值型数据--数据分析三剑客(核心)的文章就讲到这里了,如果你想了解更多关于pandas(进阶操作)--处理非数值型数据--数据分析三剑客(核心)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
对于 Metal ,如果对主纹理进行 mipmap 处理,是否还需要对多采样纹理进行 mipmap 处理?我阅读了苹果文档,但没有得到任何相关信息。 最佳答案 Mipmapping 适用于您将从中
我正在使用的代码在后端 Groovy 代码中具有呈现 GSP(Groovy 服务器页面)的 Controller 。对于前端,我们使用 React-router v4 来处理路由。我遇到的问题是,通过
我们正在 build 一个巨大的网站。我们正在考虑是在服务器端(ASP .Net)还是在客户端进行 HTML 处理。 例如,我们有 HTML 文件,其作用类似于用于生成选项卡的模板。服务器端获取 HT
我正在尝试将图像加载到 void setup() 中的数组中,但是当我这样做时出现此错误:“类型不匹配,'processing .core.PImage' does not匹配“processing.
我正在尝试使用其私有(private)应用程序更新 Shopify 上的客户标签。我用 postman 尝试过,一切正常,但通过 AJAX,它带我成功回调而不是错误,但成功后我得到了身份验证链接,而不
如何更改我的 Processing appIconTest.exe 导出的默认图标在窗口中的应用程序? 默认一个: 最佳答案 经过一些研究,我能找到的最简单的解决方案是: 进入 ...\process
我在 Processing 中做了一个简单的小游戏,但需要一些帮助。我有一个 mp3,想将它添加到我的应用程序中,以便在后台循环运行。 这可能吗?非常感谢。 最佳答案 您可以使用声音库。处理已经自带
我有几个这样创建的按钮: 在 setup() PImage[] imgs1 = {loadImage("AREA1_1.png"),loadImage("AREA1_2.png"),loadImage
我正在尝试使用 Processing 创建一个多人游戏,但无法弄清楚如何将屏幕分成两个以显示玩家的不同情况? 就像在 c# 中一样,我们有Viewport leftViewport,rightView
我一直在尝试使用 Moore 邻域在处理过程中创建元胞自动机,到目前为止非常成功。我已经设法使基本系统正常工作,现在我希望通过添加不同的功能来使用它。现在,我检查细胞是否存活。如果是,我使用 fill
有没有办法用 JavaScript 代码检查资源使用情况?我可以检查脚本的 RAM 使用情况和 CPU 使用情况吗? 由于做某事有多种方法,我可能会使用不同的方法编写代码,并将其保存为两个不同的文件,
我想弄清楚如何处理这样的列表: [ [[4,6,7], [1,2,4,6]] , [[10,4,2,4], [1]] ] 这是一个整数列表的列表 我希望我的函数将此列表作为输入并返回列表中没有重复的整
有没有办法在不需要时处理 MethodChannel/EventChannel ?我问是因为我想为对象创建多个方法/事件 channel 。 例子: class Call { ... fields
我有一个关于在 Python3 中处理 ConnectionResetError 的问题。这通常发生在我使用 urllib.request.Request 函数时。我想知道如果我们遇到这样的错误是否可
我一直在努力解决这个问题几个小时,但无济于事。代码很简单,一个弹跳球(粒子)。将粒子的速度初始化为 (0, 0) 将使其保持上下弹跳。将粒子的初始化速度更改为 (0, 0.01) 或任何十进制浮点数都
我把自己弄得一团糟。 我想在我的系统中添加 python3.6 所以我决定在我的 Ubuntu 19.10 中卸载现有的。但是现在每次我想安装一些东西我都会得到这样的错误: dpkg: error w
我正在努力解决 Rpart 包中的 NA 功能。我得到了以下数据框(下面的代码) Outcome VarA VarB 1 1 1 0 2 1 1 1
我将 Java 与 JSF 一起使用,这是 Glassfish 3 容器。 在我的 Web 应用程序中,我试图实现一个文件(图像)管理系统。 我有一个 config.properties我从中读取上传
所以我一直在Processing工作几个星期以来,虽然我没有编程经验,但我已经转向更复杂的项目。我正在编写一个进化模拟器,它会产生具有随机属性的生物。 最终,我将添加复制,但现在这些生物只是在屏幕上漂
有人知道 Delphi 2009 对“with”的处理有什么不同吗? 我昨天解决了一个问题,只是将“with”解构为完整引用,如“with Datamodule、Dataset、MainForm”。
我是一名优秀的程序员,十分优秀!