- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
将构建的知识图片字典化, 用于后面对问题的解析,下图为症状的字典,其它字典同理 。
将建字典数据,组装集合 。
cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
# 特征词路径
self.disease_path = os.path.join(cur_dir, '../dict/disease.txt')
self.check_path = os.path.join(cur_dir, '../dict/examine.txt')
self.drug_path = os.path.join(cur_dir, '../dict/drug.txt')
self.food_path = os.path.join(cur_dir, '../dict/food.txt')
self.symptom_path = os.path.join(cur_dir, '../dict/symptom.txt')
self.deny_path = os.path.join(cur_dir, '../dict/deny.txt')
# 加载数据
self.disease_wds = [i.strip() for i in open(self.disease_path, encoding="utf-8") if i.strip()] # ['干眼', '右膝髌上囊及关节腔少量积液']
self.check_wds = [i.strip() for i in open(self.check_path, encoding="utf-8") if i.strip()] # ['膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底']
self.drug_wds = [i.strip() for i in open(self.drug_path, encoding="utf-8") if i.strip()]
self.food_wds = [i.strip() for i in open(self.food_path, encoding="utf-8") if i.strip()]
self.symptom_wds = [i.strip() for i in open(self.symptom_path, encoding="utf-8") if i.strip()] # ['畏光','干涩','看东西有时候清楚有时候不清楚']
# 读出所有 dict 里面的字典数据,并拼接成一个大而全的 集合
# ['干眼', '右膝髌上囊及关节腔少量积液','膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底','畏光','干涩','看东西有时候清楚有时候不清楚']
self.region_words = set(self.disease_wds + self.check_wds + self.drug_wds + self.food_wds + self.symptom_wds)
构建 Trie 字典树 Trie字典树: https://www.cnblogs.com/vipsoft/p/17722820.html Aho-Corasick 算法 AC自动机实现: https://www.cnblogs.com/vipsoft/p/17722761.html 。
# 目的是为了将来对用户提的问题,进行关键词快速提取
def build_actree(self, word_list):
"""
构造actree,加速过滤
:param word_list:
:return:
"""
actree = ahocorasick.Automaton()
for index, word in enumerate(word_list):
actree.add_word(word, (index, word)) # 向trie树中添加单词
actree.make_automaton()
return actree
# 将 ['干眼', '右膝髌上囊及关节腔少量积液','膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底'],进行分类,组装成不同类型的字典
def build_wdtype_dict(self):
"""
构造词对应的类型
:return:
"""
wd_dict = dict()
for wd in self.region_words:
wd_dict[wd] = []
if wd in self.disease_wds:
wd_dict[wd].append('disease')
if wd in self.check_wds:
wd_dict[wd].append('check')
if wd in self.drug_wds:
wd_dict[wd].append('drug')
if wd in self.food_wds:
wd_dict[wd].append('food')
if wd in self.symptom_wds:
wd_dict[wd].append('symptom')
return wd_dict
通过AC算法,过滤关键词 。
# "请问最近看东西有时候清楚有时候不清楚是怎么回事"
def check_medical(self, question):
"""
问句过滤
:param question:
:return:
"""
region_wds = []
for i in self.region_tree.iter(question): # 从问题中,找出关键词
wd = i[1][1] # 看东西有时候清楚有时候不清楚
region_wds.append(wd)
stop_wds = []
for wd1 in region_wds:
for wd2 in region_wds:
if wd1 in wd2 and wd1 != wd2:
stop_wds.append(wd1)
final_wds = [i for i in region_wds if i not in stop_wds] # '看东西有时候清楚有时候不清楚'
medical_dict = {i: self.wdtype_dict.get(i) for i in final_wds} # {'看东西有时候清楚有时候不清楚': ['symptom']}
return medical_dict
解析出问题的类型 。
data['args'] = medical_dict
# 若没有查到相关的外部查询信息,那么则将该疾病的描述信息返回
if question_types == [] and 'symptom' in types:
question_types = ['symptom_disease']
# 将多个分类结果进行合并处理,组装成一个字典
data['question_types'] = question_types
输出字典 。
question = "请问最近看东西有时候清楚有时候不清楚是怎么回事"
# 最终输出
data = {'args': {'看东西有时候清楚有时候不清楚': ['symptom']}, 'question_types': ['symptom_disease']}
question = "干眼常用药有哪些"
# 最终输出
data = {'args': {'干眼': ['disease']}, 'question_types': ['disease_drug']}
question = "干眼哪些不能吃"
data = {'args': {'干眼': ['disease']}, 'question_types': ['disease_not_food']}
后面根据 question_types 生成 CQL语句 。
源代码地址: https://gitee.com/VipSoft/VipQA 。
最后此篇关于在线问诊Python、FastAPI、Neo4j—构建问题分类器的文章就讲到这里了,如果你想了解更多关于在线问诊Python、FastAPI、Neo4j—构建问题分类器的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!