- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
翻译自: Fine-tuning a model with the Trainer API 。
Transformers 提供了一个 Trainer 类,处理微调在数据集上提供的任何预训练模型。 完成所有数据预处理工作后,只需执行几个步骤即可定义 Trainer。 最困难的部分可能是准备运行 Trainer.train() 的环境,因为它在 CPU 上运行速度非常慢。 如果没有设置 GPU,可以在 Google Colab 上访问免费的 GPU 或 TPU。 下面的代码示例假设已经完成了数据预处理的操作:
from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("glue", "mrpc")
checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(example):
return tokenizer(example["sentence1"], example["sentence2"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
map函数与DataCollatorWithPadding函数请查阅: Processing the data 。
定义 Trainer 之前的第一步是定义一个 TrainingArguments 类,该类将包含 Trainer 用于训练和评估的所有超参数。 必须提供的唯一参数是保存训练模型的目录以及checkpoint。 对于其余所有内容,可以保留默认值,这对于基本的微调应该非常有效.
from transformers import TrainingArguments
training_args = TrainingArguments("test-trainer")
第二步是定义我们的模型。 使用 AutoModelForSequenceClassification 类,它带有两个标签:
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
一旦我们有了模型,我们就可以通过传递迄今为止构建的所有对象来定义 Trainer --- Model 、 training_args 、 training 和 validation datasets 、 data_collator 和 tokenizer :
from transformers import Trainer
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
)
要在数据集上微调模型,我们只需调用训练器的 train() 方法:
trainer.train()
这将开始微调(在 GPU 上应该需要几分钟)并每 500 步报告一次训练损失。 但是,它不会告诉你模型的表现有多好(或多差)。 这是因为:
evaluation_strategy
设置为“ steps
”(评估每个 eval_steps
)或“ epoch
”(在每个 epoch
结束时评估)来进行评估。 compute_metrics()
函数来在所述评估期间计算指标(否则评估只会打印损失,这不是一个非常直观的数字)。 让我们看看如何构建一个有用的 compute_metrics() 函数并在下次训练时使用它。 该函数必须采用 EvalPrediction 对象(这是一个带有预测字段和 label_ids 字段的命名元组),并将返回一个将字符串映射到浮点数的字典(字符串是返回的指标的名称,浮点数是它们的值)。 为了从我们的模型中获得一些预测,我们可以使用 Trainer.predict() 方法:
predictions = trainer.predict(tokenized_datasets["validation"])
print(predictions.predictions.shape, predictions.label_ids.shape)
## 输出
(408, 2) (408,)
Predict() 方法的输出是另一个具有三个字段的命名元组:预测、label_ids 和指标。 指标字段将仅包含传递的数据集的损失,以及一些时间指标(预测所需的总时间和平均时间)。 一旦我们完成了 compute_metrics() 函数并将其传递给Trainer,该字段还将包含 compute_metrics() 返回的指标。 结果所展示的预测是一个形状为 408 x 2 的二维数组(408 是我们使用的数据集中的元素数量)。 这些是我们传递给 predict() 的数据集每个元素的logits。 为了将它们转换为可以与标签进行比较的预测,我们需要在第二个轴上获取最大值的索引:
import numpy as np
preds = np.argmax(predictions.predictions, axis=-1)
我们现在可以将这些预测与标签进行比较。 为了构建我们的 compute_metric() 函数,我们将依赖于HuggingFace Evaluate库中的指标。 我们可以像加载数据集一样轻松地加载与 MRPC 数据集关联的指标,这次使用 evaluate.load() 函数。 返回的对象有一个 compute() 方法,我们可以用它来进行度量计算:
import evaluate
metric = evaluate.load("glue", "mrpc")
metric.compute(predictions=preds, references=predictions.label_ids)
## 输出:
{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542}
获得的确切结果可能会有所不同,因为 Model Head 部分的随机初始化可能会改变它实现的指标。 在这里,我们可以看到我们的模型在验证集上的准确率为 85.78%,F1 得分为 89.97。 这些是用于评估 GLUE 基准的 MRPC 数据集结果的两个指标。 BERT 论文中的表格报告了基本模型的 F1 分数为 88.9,这是非case的模型,而我们目前使用的是case的模型,这解释了更好的结果。 将所有内容包装在一起,我们得到了 compute_metrics() 函数:
def compute_metrics(eval_preds):
metric = evaluate.load("glue", "mrpc")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
为了查看它在每个epoch结束时报告指标的实际使用情况,下面是我们如何使用这个 compute_metrics() 函数定义一个新的 Trainer
training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch")
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
请注意,我们创建了一个新的 TrainingArguments ,其评估策略设置为“ epoch ”和一个新模型 - 否则,我们将继续训练已经训练过的模型。 要启动新的训练运行,我们执行:
trainer.train()
这次,除了训练损失之外,它将在每个时期结束时报告验证损失和指标。 同样,由于模型的Model Head初始化,你达到的确切准确度/F1 分数可能与我们发现的有所不同,但它应该处于相同的范围内。 Trainer 将在多个 GPU 或 TPU 上开箱即用,并提供许多选项,例如混合精度训练(在训练参数中使用 fp16 = True).
最后此篇关于聊聊预训练模型的微调的文章就讲到这里了,如果你想了解更多关于聊聊预训练模型的微调的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!