- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos 。
int[] fathers = new int[100001];
先回顾一下解题思路,整个流程如下图所示 。
假设此题的入参是这四个数字:4,6,15, 35,回顾什么时候咱们会用到这四个数字,显然计算每个数字的质因数的时候必然会用到,计算完成后,得到了下图的关系(这是前文的内容) 。
然后,咱们根据上图,得到了每个质因数对应的数字集合,也就是下图 。
看着上图,重点来了: 从上图开始,再到后面的并查集操作,再到最终的结束,都不会用4、6、15、35这样的数字去计算什么了 。
所以,上面那幅图中的4、6、15、35,是不是可以替换成他们在入参数组中的下标?假设入参数组是[4,6,15,35],他们的数组下标就分别是:0、1、2、3 。
将数字替换成数组下标后,上面那幅图的内容就有了变化,变成了下图的样子,之前的[4,6,15,35]四个数字变成了[0,1,2,3] 。
接下来的并查集操作中,也可以用[0,1,2,3]取代[4,6,15,35]也可以吗?
当然可以,之前是合并4和6,现在变成了合并0和1,题目是要的是连通的数量,而某个唯一的数字到底是4还是它的数组下标0,这不重要了,重要的是合并不能有错就行 。
这样替换后,如果入参是四个数字,不论值是多少,在并查集操作时,只需要用到它们的数组下标:0、1、2、3,最大也只有3 。
这就有意思了,数组fathers和rootSetSize的大小从100001变成了入参数组的长度! 。
准备工作完成了,可以正式动手优化了 。
class Solution {
// 并查集的数组, fathers[3]=1的意思是:数字3的父节点是1
// int[] fathers = new int[100001];
int[] fathers;
// 并查集中,每个数字与其子节点的元素数量总和,rootSetSize[5]=10的意思是:数字5与其所有子节点加在一起,一共有10个元素
// int[] rootSetSize = new int[100001];
int[] rootSetSize;
// map的key是质因数,value是以此key作为质因数的数字
// 例如题目的数组是[4,6,15,35],对应的map就有四个key:2,3,5,7
// key等于2时,value是[4,6],因为4和6的质因数都有2
// key等于3时,value是[6,15],因为6和16的质因数都有3
// key等于5时,value是[15,35],因为15和35的质因数都有5
// key等于7时,value是[35],因为35的质因数有7
Map<Integer, List<Integer>> map = new HashMap<>();
// 用来保存并查集中,最大树的元素数量
int maxRootSetSize = 1;
/**
* 带压缩的并查集查找(即寻找指定数字的根节点)
* @param i
*/
private int find(int i) {
// 如果执向的是自己,那就是根节点了
if(fathers[i]==i) {
return i;
}
// 用递归的方式寻找,并且将整个路径上所有长辈节点的父节点都改成根节点,
// 例如1的父节点是2,2的父节点是3,3的父节点是4,4就是根节点,在这次查找后,1的父节点变成了4,2的父节点也变成了4,3的父节点还是4
fathers[i] = find(fathers[i]);
return fathers[i];
}
/**
* 并查集合并,合并后,child会成为parent的子节点
* @param parent
* @param child
*/
private void union(int parent, int child) {
int parentRoot = find(parent);
int childRoot = find(child);
// 如果有共同根节点,就提前返回
if (parentRoot==childRoot) {
return;
}
// child元素根节点是childRoot,现在将childRoot的父节点从它自己改成了parentRoot,
// 这就相当于child所在的整棵树都拿给parent的根节点做子树了
fathers[childRoot] = fathers[parentRoot];
// 合并后,这个树变大了,新增元素的数量等于被合并的字数元素数量
rootSetSize[parentRoot] += rootSetSize[childRoot];
// 更像最大数量
maxRootSetSize = Math.max(maxRootSetSize, rootSetSize[parentRoot]);
}
public int largestComponentSize(int[] nums) {
// 对数组中的每个数,算出所有质因数,构建map
for (int i=0;i<nums.length;i++) {
int cur = nums[i];
for (int j=2;j*j<=cur;j++) {
// 从2开始逐个增加,能整除的一定是质数
if(cur%j==0) {
// map.computeIfAbsent(j, key -> new ArrayList<>()).add(nums[i]);
map.computeIfAbsent(j, key -> new ArrayList<>()).add(i);
}
// 从cur中将j的因数全部去掉
while (cur%j==0) {
cur /= j;
}
}
// 能走到这里,cur一定是个质数,
// 因为nums[i]被除过多次后结果是cur,所以nums[i]能被cur整除,所以cur是nums[i]的质因数,应该放入map中
if (cur!=1) {
// map.computeIfAbsent(cur, key -> new ArrayList<>()).add(nums[i]);
map.computeIfAbsent(cur, key -> new ArrayList<>()).add(i);
}
}
fathers = new int[nums.length];
rootSetSize = new int[nums.length];
// 至此,map已经准备好了,接下来是并查集的事情,先要初始化数组
for(int i=0;i< fathers.length;i++) {
// 这就表示:数字i的父节点是自己
fathers[i] = i;
// 这就表示:数字i加上其下所有子节点的数量等于1(因为每个节点父节点都是自己,所以每个节点都没有子节点)
rootSetSize[i] = 1;
}
// 遍历map
for (int key : map.keySet()) {
// 每个key都是一个质因数
// 每个value都是这个质因数对应的数字
List<Integer> list = map.get(key);
int size = list.size();
// 超过1个元素才有必要合并
if (size>1) {
// 取第0个元素作为父节点
int parent = list.get(0);
// 将其他节点全部作为地0个元素的子节点
for(int i=1;i<size;i++) {
union(parent, list.get(i));
}
}
}
return maxRootSetSize;
}
}
这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos 。
学习路上,你不孤单,欣宸原创一路相伴... 。
最后此篇关于LeetCode952三部曲之二:小幅度优化(137ms->122ms,超39%->超51%)的文章就讲到这里了,如果你想了解更多关于LeetCode952三部曲之二:小幅度优化(137ms->122ms,超39%->超51%)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
所以,我有一个 Triangle->AABB 碰撞算法,我让它返回 AABB 碰撞的三角形。我希望三角形的 3 个 vector 和运动的方向/幅度能让我确定一个偏转 vector ,这样当你以一个角
我希望我能找到一种方法从 python 中的 mp3 中获取振幅数据。与 audacity 类似,但我不想要视觉效果,一个简单的值数组就可以了。当声音变大时,我希望我的代码在某些时候对声音使用reac
在 OpenCV 中,如何计算 Mat 中的平均梯度强度和平均梯度方向? 我已经通过谷歌搜索找到了以下方法,但我想在继续下一步之前确认我确实在正确地执行此操作。 这是正确的吗? Mat img = i
我想在 java 中为麦克风创建一个音频电平表来检查输入的音量。它应该看起来像操作系统之一。我不是在问 gui。它只是计算 产生的字节流中的音频电平 n = targetDataLine.read(
我正在开发一个应用程序,该应用程序既可以录制音频文件,也可以选择在录制完成后播放该文件。 UI 有一个 EQ 组件,该组件相对于当前录音幅度进行动画处理。我已经通过 MediaRecorder.get
我读过两篇关于从 AudioInputStream 中提取样本并将其转换为 dB 的文章。 https://stackoverflow.com/a/26576548/8428414 https://s
我的目标是在 OpenCV 中获取图像的DFT。 使用 dft 函数,我能够计算它,然后通过计算它的大小来绘制它(然后,应用对数并最终对其进行归一化,以便绘制介于 0 和 1 之间的值) . 我的结果
我的目标是在 OpenCV 中获取图像的DFT。 使用 dft 函数,我能够计算它,然后通过计算它的大小来绘制它(然后,应用对数并最终对其进行归一化,以便绘制介于 0 和 1 之间的值) . 我的结果
我正在从事一个 Python 项目,该项目模拟振动弦产生的声音。如果对于给定的字符串,我已经确定了运动的傅里叶变换,则可以通过简单的操作将这些结果更改为显示每个(音频)频率幅度的数据。 是否可以使用
我使用 apache commons 数学库来转换我的音频样本缓冲区上的 FFt 和 IFFT。 FFT 的输出给了我一组复数。频率在中间镜像。样本缓冲区大小为 4096 个样本,我得到 2048 个
我是一名优秀的程序员,十分优秀!