- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
分支指令用于改变程序的执行流,分为无条件分支和条件分支两类.
JMP
JMP 指令用于无条件跳转,类似于C中的 goto 关键字, JMP 指令的跳转范围为[0, 4M-1]字.
RJMP 指令用于相对跳转,跳转范围为当前位置[-2K, 2K-1]字.
IJMP 指令用于间接跳转,跳转的目的地址存放在 Z 寄存器中(记住单位是字).
例如:
JMP f2 ; 跳转到f2
f1:
RJMP f3 ; 跳转到f3
f2:
LDI ZL, lo8(f1)
LDI ZH, hi8(f1) ; Z = f1
CLC
ROR ZH
ROR ZL ; Z = Z >> 1
IJMP ; 跳转到f1
f3:
RJMP f2 ; 跳转到f2
注意:实测在GNU汇编下, IJMP 指令中不能直接把标签赋值给 Z 寄存器,因为标签表示的地址的单位是字节,而 Z 寄存器中存放的应该是字地址,所以要将标签右移一位传给 Z 寄存器。而 JMP 指令和 RJMP 指令则可以直接传标签.
CALL
/ RET
CALL 指令用于子程序调用,和 JMP 指令一样,也可以实现程序跳转,但是 CALL 指令在跳转之前会将下一条指令的地址(返回地址)压入栈中。 CALL 指令的跳转范围为[0, 64K-1]字.
RCALL 指令用于相对子程序调用,跳转范围为当前位置[-2K, 2K-1]字.
ICALL 指令用于间接子程序调用,子程序的地址存放在 Z 寄存器中(记住单位是字).
RET 指令用于子程序返回,先将返回地址从栈中弹出,然后进行跳转.
RETI 指令用于中断子程序返回,和 RET 指令不同的是,它还会设置全局中断使能位 I .
例如:
CALL f1 ; 调用f1子程序
RCALL f1 ; 调用f1子程序
LDI ZL, lo8(f1)
LDI ZH, hi8(f1) ; Z = f1
CLC
ROR ZH
ROR ZL ; Z = Z >> 1
ICALL ; 调用f1子程序
f1:
...
RET ; 子程序返回
XXX_IRQHandler:
...
RETI ; 中断子程序返回
CP
CP 指令用于比较,实际上就是只影响标志位而不保存结果的减法操作。后缀带 C 表示带进位比较,后缀带 I 表示与立即数比较,后缀带 SE 表示如果相等,则跳过下一条指令.
例如:
LDI R16, 0x01
LDI R17, 0x02
CP R16, R17
BRLT f1 ; 1 < 2,跳转到f1
RJMP f3 ; 不会执行
f1:
CPI R16, 0x01
BREQ f2 ; 1 == 1,跳转到f2
RJMP f3 ; 不会执行
f2:
LDI R17, 0x01
CPSE R16, R17 ; 1 == 1,跳过下一条指令
RJMP f3 ; 不会执行
SEC
CPC R16, R17
BRLT f3 ; 1 < 1 + C(1),跳转到f3
RJMP f1 ; 不会执行
f3:
RJMP f3
SBxx
形如 SBxx 的指令根据寄存器中的某一位来选择跳过执行下一条指令, SBRC / SBRS 指令根据的是通用寄存器中的位的清除/设置状态,而 SBIC / SBIS 指令根据的是I/O寄存器中的.
例如:
f1:
LDI R16, 0xAA
SBRS R16, 1 ; R16.1 == 1,跳过下一条指令
RJMP f1 ; 不会执行
SBIC PINB, 2 ; 如果PB2输入为低电平,跳过下一条指令
RJMP f1
BRxx
形如 BRxx 的指令用于根据条件改变程序执行流,支持的条件具体见下表:
BRxx 类的指令一般和 CP 或 SUB 指令配合使用.
例如:
f1:
LDI R16, 0X01
LDI R17, 0X02
CP R16, R17
BRLO f2 ; 0x01 < 0x02,跳转到f2
RJMP f1 ; 不会执行
f2:
CPI R16, 0x01
BRSH f3 ; 0x01 == 0x01,跳转到f3
RJMP f1 ; 不会执行
f3:
RJMP f3
最后此篇关于AVR汇编(六):分支指令的文章就讲到这里了,如果你想了解更多关于AVR汇编(六):分支指令的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我试图在图形模式下打印一个字符。通常当我打印我正在做的一个字符时: mov ah,14 ; ah=14 mov al,'x' int 10h ; print the character 这
我试图通过更改其中的一个字节来修改存储在内存中的字符串。我为此使用了 movb,但由于某种原因,给定内存位置的字节没有改变。 在 gdb 调试器上: 14 movb %al, (%r10) # nex
我一直在阅读一些汇编代码,并且开始发现调用指令实际上是与程序计数器相关的。 但是,每当我使用 Visual Studio 或 Windbg 进行调试时,它总是显示 call 0xFFFFFF ...这
我最近一直在使用 Visual C++ 中的内联汇编,我想知道是否可以直接向堆栈上的局部变量添加值,例如: push 5 add [esp], 7 这样做可以吗?我问这个问题是因为我在执行此操作时随机
我有下一个代码: mov al, -5 add al, 132 add al, 1 据我检查,溢出标志和进位标志将在第一个操作中设置,而在第二个操作中,仅设置溢出。 但我不明白为什么: 在无符号数中,
在 64 位 x86 汇编 nasm 中,如何将单个字节从寄存器移动到 .data 节中定义的内存位置? 我知道这有效 global _main section .data quotient db 0
我的汇编代码有问题。我想打印存储在寄存器 cx 中的数字,但是当我尝试打印它时,它打印的是 ascii 字符而不是 ascii 数字,所以我决定编写一个程序将 ascii char 转换为 ascii
为什么第 1B 行的跳转指令(例如)变成了 EBBD? 我知道“jmp”= EB但是BD是怎么计算的呢? 最佳答案 短跳转使用一个带符号的偏移量添加到 JMP 之后的指令地址。 例如,第一个 JMP
以下两者有什么区别: mov eax, [eax+4] 和 add eax, 4 mov eax, [eax] 如果不是,那么汇编器是否会选择哪个来进行某种优化? 最佳答案 这
看《The Shellcoder's Handbook》中的一些汇编和反汇编代码,发现一条指令的序列操作数是不一样的。 例如,在 assembly 上: mov ebx,0 并且,在反汇编时: mov
我有这个非常简单的汇编代码: start: add ax, 100 ; if ax overflow add to bx 1 jmp start 但我不知道如何检测 ax 寄存器溢出,有人可以帮
在 64 位 x86 汇编 nasm 中,如何将单个字节从寄存器移动到 .data 节中定义的内存位置? 我知道这有效 global _main section .data quotient db 0
我的汇编代码有问题。我想打印存储在寄存器 cx 中的数字,但是当我尝试打印它时,它打印的是 ascii 字符而不是 ascii 数字,所以我决定编写一个程序将 ascii char 转换为 ascii
我正在学习一些关于操作系统开发的教程,我发现了一篇关于多重引导 header 。这些是您必须定义的一些“神奇”值才能使用GRUB2。这些是命令: # Declare constants used f
为什么第 1B 行的跳转指令(例如)变成了 EBBD? 我知道“jmp”= EB但是BD是怎么计算的呢? 最佳答案 短跳转使用一个带符号的偏移量添加到 JMP 之后的指令地址。 例如,第一个 JMP
我正在尝试从内存中复制一些单词并使用汇编将其保存到另一个内存地址。我正在尝试为其编写代码,但我不确定其中的某些部分。我将简要描述我想要做什么。 源地址、目标地址和要复制的字数是函数的输入参数。 最佳答
当我们想要像这样创建一个初始化变量时: name db 'zara ali' 我们创建了一个字节大小变量,但我们在其中存储了一个字符串 这怎么可能?? 当我们使用这条指令时: MOV ecx, nam
我还是汇编的新手,我还不知道汇编中的许多命令代码。我想在 16 位寄存器中进行除法。我想打印它的内容。我知道我需要将寄存器的内容转换为 ASCII 进行打印,但同样,我的问题是除法。请帮我。 比如cx
使用有什么区别: c.eq.s $1, $2 bc1t L2 并使用: beq $1, $2, L2 如果他们做同样的事情,为什么有两种分支方式?如果它们不同,那么它们各自的好处是什么
源代码: int main() { int i; for(i=0, i : push rbp 2. 0x000055555555463b :
我是一名优秀的程序员,十分优秀!