- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
线程的创建和生命周期涉及到线程的产生、执行和结束过程。让我们继续深入探索这个主题:
线程的创建方式有多种,你可以选择适合你场景的方式:
继承Thread类: 创建一个类,继承自Thread类,并重写run()方法。通过实例化这个类的对象,并调用start()方法,系统会自动调用run()方法执行线程逻辑.
public class MyThread extends Thread {
public void run() {
// 线程逻辑代码
}
}
// 创建并启动线程
MyThread thread = new MyThread();
thread.start();
实现Runnable接口: 创建一个类,实现Runnable接口,并实现run()方法。通过将实现了Runnable接口的对象作为参数传递给Thread类的构造函数,然后调用start()方法启动线程.
public class MyRunnable implements Runnable {
public void run() {
// 线程逻辑代码
}
}
// 创建并启动线程
MyRunnable runnable = new MyRunnable();
Thread thread = new Thread(runnable);
thread.start();
实现Callable接口: 创建一个类,实现Callable接口,并实现call()方法。通过创建一个FutureTask对象,将Callable对象作为参数传递给FutureTask构造函数,然后将FutureTask对象传递给Thread类的构造函数,最后调用start()方法启动线程.
public class MyCallable implements Callable<Integer> {
public Integer call() {
// 线程逻辑代码
return 1;
}
}
// 创建并启动线程
MyCallable callable = new MyCallable();
FutureTask<Integer> futureTask = new FutureTask<>(callable);
Thread thread = new Thread(futureTask);
thread.start();
通过线程池创建线程: 使用Java的线程池ExecutorService来管理线程的生命周期。通过提交Runnable或Callable任务给线程池,线程池会负责创建、执行和终止线程.
ExecutorService executorService = Executors.newFixedThreadPool(5);
executorService.execute(new Runnable() {
public void run() {
// 线程逻辑代码
}
});
executorService.shutdown();
线程的生命周期经历以下几个状态:
理解线程的创建和生命周期对于处理并发编程非常重要。通过选择合适的创建方式和正确地管理线程的生命周期,可以确保线程安全、高效地运行,从而优化程序性能.
synchronized关键字在Java中用于实现线程安全的代码块,在其背后使用JVM底层内置的锁机制。synchronized的设计考虑了各种并发情况,因此具有以下优点:
synchronized的锁机制包括以下几个阶段的升级过程:
需要注意的是,如果在轻量级锁状态下,有线程获取对象的HashCode时,会直接升级为重量级锁。这是因为锁升级过程中使用的mark头将HashCode部分隐去,以确保锁升级过程的正确性.
底层实现中,synchronized使用了monitor enter和monitor exit指令来进行进入锁和退出锁的同步操作。对于用户来说,这些操作是不可见的。synchronized锁的等待队列存储在对象的waitset属性中,用于线程的等待和唤醒操作.
示例代码:
public class Singleton {
private static volatile Singleton instance;
private Singleton() {
// 私有构造方法
}
public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
为什么需要使用volatile: 虽然synchronized关键字可以确保线程安全,但是如果没有volatile修饰,可能会发生指令重排的问题。volatile关键字的主要作用是防止指令重排,保证可见性和有序性。尽 管在实际工作中很少遇到指令重排导致的问题,但是理论上存在这种可能性,因此使用volatile修饰变量可以避免出现意外情况.
指令重排原因及影响: 指令重排是为了优化程序的执行速度,由于CPU的工作速度远大于内存的工作速度,为了充分利用CPU资源,处理器会对指令进行重新排序。例如在创建一个对象的过程中,通常被拆分为三个步骤:1)申请空间并初始化,2)赋值,3)建立地址链接关系。如果没有考虑逃逸分析,可能会发生指令重排的情况.
这种重排可能导致的问题是,当一个线程在某个时刻执行到步骤2,而另一个线程在此时获取到了对象的引用,但是这个对象还没有完成初始化,导致使用到未完全初始化的对象,可能会出现异常或不正确的结果。通过使用volatile关键字,可以禁止指令重排,确保对象的完全初始化后再进行赋值操作.
抽象队列同步器(Abstract Queued Synchronizer)是Java并发编程中非常重要的同步框架,被广泛应用于各种锁实现类,如ReentrantLock、CountDownLatch等。AQS提供了基于双端队列的同步机制,支持独占模式和共享模式,并提供了一些基本的操作方法.
在AQS中,用来表示是否是独占锁的Exclusive属性对象非常重要。它可以控制同一时间只有一个线程能够获取锁,并且支持重入机制。另外,AQS的state属性也非常关键,state的含义和具体用途是由具体的子类决定的。子类可以通过对state属性的操作来实现不同的同步逻辑。例如,在ReentrantLock中,state表示锁的持有数;在CountDownLatch中,state表示还需要等待的线程数.
此外,AQS还使用两个Node节点来表示双端队列,用于存储被阻塞的线程。这些节点会根据线程的不同状态(如等待获取锁、等待释放锁)被添加到队列的不同位置,从而实现线程同步和调度.
以下是一个简化的示例代码,展示了如何使用ReentrantLock和AQS进行线程同步:
import java.util.concurrent.locks.ReentrantLock;
public class Example {
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
lock.lock();
try {
// 执行线程1的逻辑
} finally {
lock.unlock();
}
});
Thread thread2 = new Thread(() -> {
lock.lock();
try {
// 执行线程2的逻辑
} finally {
lock.unlock();
}
});
thread1.start();
thread2.start();
}
}
在上述代码中,我们使用了ReentrantLock作为锁工具,它内部使用了AQS来实现线程同步。通过调用lock()方法获取锁,并在finally块中调用unlock()方法释放锁,确保线程安全执行。这样,只有一个线程能够获取到锁,并执行相应的逻辑.
总之,AQS作为Java线程同步的核心框架,在并发编程中起到了至关重要的作用。它提供了强大的同步机制,可以支持各种锁的实现,帮助我们实现线程安全的代码.
使用Java线程池是一种优化并行性的有效方式。线程池可以管理和复用线程,减少了线程创建和销毁的开销,提高了系统的性能和资源利用率.
在Java中,可以使用ExecutorService接口来创建和管理线程池。ExecutorService提供了一些方法来提交任务并返回Future对象,可以用于获取任务的执行结果.
在创建线程池时,可以根据实际需求选择不同的线程池类型。常用的线程池类型包括:
使用线程池时,可以将任务分解为多个小任务,提交给线程池并发执行。这样可以充分利用系统资源,提高任务执行的并行性.
同时,线程池还可以控制并发线程的数量,避免系统资源耗尽和任务过载的问题。通过设置合适的线程池大小,可以平衡系统的并发能力和资源消耗.
Fork/Join框架是Java中用于处理并行任务的一个强大工具。它基于分治的思想,将大任务划分成小任务,并利用多线程并行执行这些小任务,最后将结果合并.
在Fork/Join框架中,主要有两个核心类:ForkJoinTask和ForkJoinPool。ForkJoinTask是一个可以被分割成更小任务的任务,我们需要继承ForkJoinTask类并实现compute()方法来定义具体的任务逻辑。ForkJoinPool是一个线程池,用于管理和调度ForkJoinTask.
下面是一个简单的例子,展示如何使用Fork/Join框架来计算一个整数数组的总和:
import java.util.concurrent.*;
public class SumTask extends RecursiveTask<Integer> {
private static final int THRESHOLD = 10;
private int[] array;
private int start;
private int end;
public SumTask(int[] array, int start, int end) {
this.array = array;
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
if (end - start <= THRESHOLD) {
int sum = 0;
for (int i = start; i < end; i++) {
sum += array[i];
}
return sum;
} else {
int mid = (start + end) / 2;
SumTask leftTask = new SumTask(array, start, mid);
SumTask rightTask = new SumTask(array, mid, end);
leftTask.fork(); // 将左半部分任务提交到线程池
rightTask.fork(); // 将右半部分任务提交到线程池
int leftResult = leftTask.join(); // 等待左半部分任务的完成并获取结果
int rightResult = rightTask.join(); // 等待右半部分任务的完成并获取结果
return leftResult + rightResult;
}
}
public static void main(String[] args) {
int[] array = new int[100];
for (int i = 0; i < array.length; i++) {
array[i] = i + 1;
}
ForkJoinPool forkJoinPool = new ForkJoinPool();
SumTask sumTask = new SumTask(array, 0, array.length);
int result = forkJoinPool.invoke(sumTask); // 使用线程池来执行任务
System.out.println("Sum: " + result);
}
}
在这个例子中,我们定义了一个SumTask类,继承自RecursiveTask类,并实现了compute()方法。在compute()方法中,我们判断任务的大小是否小于阈值,如果是,则直接计算数组的总和;如果不是,则将任务划分成两个子任务,并使用fork()方法将子任务提交到线程池中,然后使用join()方法等待子任务的完成并获取结果,最后返回子任务结果的和.
在main()方法中,我们创建了一个ForkJoinPool对象,然后创建了一个SumTask对象,并使用invoke()方法来执行任务。最后打印出结果.
通过使用Fork/Join框架,我们可以方便地处理并行任务,并利用多核处理器的性能优势。这个框架在处理一些需要递归分解的问题时非常高效.
文章涉及了几个常见的并发编程相关的主题。首先,线程的创建和生命周期是面试中常被问及的话题,面试官可能会询问如何创建线程、线程的状态转换以及如何控制线程的执行顺序等。其次,synchronized关键字是用于实现线程同步的重要工具,面试中可能会涉及到它的使用场景以及与其他同步机制的比较。此外,抽象队列同步器(AQS)是Java并发编程中的核心概念,了解其原理和应用场景可以展示对并发编程的深入理解。最后,面试中可能会考察对Java线程池和Fork/Join框架的了解,包括它们的使用方法、优势和适用场景等。种子题目务必学会 。
最后此篇关于Java并发篇:6个必备的Java并发面试种子题目的文章就讲到这里了,如果你想了解更多关于Java并发篇:6个必备的Java并发面试种子题目的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
总览 数据库的数据存储有两种类型,一种是面向行的(row-oriented)数据库,另一种是面向列的(column-oriented )数据库。 面向行(事务型) 数据库 该类数据库是根据
starting from a joke 问:把大象放冰箱里,分几步? 答:三步啊,第1、把冰箱门打开,第2、把大象放进去,第3、把冰箱门带上。 问:实现spring事务,分几步? 答:三
在最近的一次采访中,我有这个问题。 这里有什么错误?我知道足够的 c#,但我看不到错误。可以吗? Class x { protected string t1; public int
我在面试中被要求设计一个文件系统,允许用户将自己的属性添加到文件和文件夹中。我刚刚说过要将属性添加到文件描述符并允许根据此属性标准搜索文件,以及添加此属性以显示在文件/文件夹详细信息中。 看起来面试官
我一直在面试,下面应该有什么问题? 我可以假设这是您无法检查类是否为空的问题,对吗?!谢谢! public class NiceActivity extends Activity { priv
给定一个数组,如何返回总和为偶数的对数? 例如: a[] = { 2 , -6 , 1, 3, 5 } 在这个数组中,偶数和的对数是(2,-6), (1,3) , (1,5), (3,5) 函数应返回
这个问题是在面试中被问到的 Assume you have a dictionary of words: (use if you have /usr/share/dict/words). Given
我被要求实现 invert(x,p,n) 返回 x 的 n 位开始于位置 p 反转(即 1 变为 0,反之亦然),其他不变。 我的解决方案是: unsigned invert(unsigned x,
有人问我这个问题:给定一个大小为 n 的 int 和 int sum 的数组,我需要返回数组元素的所有对,其总和等于 总和 std::vector > find(int* arr,size_t n,i
我在一次面试中遇到了这个问题。有一组对象与起始值和结束值相关联。与每个对象相关联的计数是具有较长开始时间和较短结束时间的其他对象的数量。所以我必须找到与每个对象关联的计数。 我提出了 O(n^2) 解
我今天在采访中被问到这个问题。我已经尝试了一种解决方案,但想知道是否有更好的方法来解决这个问题: 问题:我有一个包含 500,000 个元素的数组列表,这样数组列表的每个元素的值都与索引相同。例如:l
有一个包含白色单元格,黑色单元格和只有一个灰色单元格的矩阵,需要从 (0,0) 到 (N-1, N-1) 如果 Arra[N][N]约束:A。该路径应该只覆盖白色单元格并且应该通过灰色单元格。b.访问
给定一个正整数数组,找出排列的任意排列可以形成的最大值。我想知道是否有更好的数据结构可以为问题提供更优雅的解决方案。 import java.util.ArrayList; import java.u
我在面试中被问到以下问题(不幸的是我找不到比 N^2 更好的答案) 对于大小为 N 的 unsigned int 的给定数组 arr,对于每个元素(在索引 i 中)我应该返回一个元素在索引 j (j
极点:数组中左侧元素小于或等于它且右侧元素大于或等于它的元素。 示例输入 3,1,4,5,9,7,6,11 期望的输出 4,5,11 面试时被问到这个问题,要返回元素的索引,只返回第一个满足条件的元素
按照目前的情况,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我今天被问到这个问题,我知道答案很简单,但他让我一直到最后。 问题 编写程序删除存储在 ArrayList 中的偶数,其中包含 1 - 100。 我只是说哇 给你,这就是我的实现方式。 ArrayLi
我在一次采访中遇到了这个问题,完全被难住了。我能想到的唯一解决方案是将 currentAngle 存储在 NSArray 中以计算下一个角度。 问题:使用 iPhone 的指南针在屏幕上移动一个 35
我必须在接下来的几周内采访一些 C++ 候选人,作为公司最资深的程序员,我应该尝试弄清楚这些人是否知道他们在做什么。 那么有人有什么建议吗? 就我个人而言,我讨厌被留在房间里填写一些 C++ 问题,所
消息队列(MQ),一种能实现生产者到消费者单向通信的通信模型,这也是现在常用的主流中间件。 常见有 RabbitMQ、ActiveMQ、Kafka等 他们的特点也有很多 比如 解偶、异步、广播
我是一名优秀的程序员,十分优秀!