gpt4 book ai didi

深度学习(九)——神经网络:最大池化的作用

转载 作者:我是一只小鸟 更新时间:2023-07-21 22:33:35 31 4
gpt4 key购买 nike

1、 torch.nn中Pool layers的介绍

官网链接:

https://pytorch.org/docs/stable/nn.html#pooling-layers 。

1. nn.MaxPool2d介绍

nn.MaxPool2d是在进行图像处理时,Pool layers最常用的函数 。

官方文档: MaxPool2d — PyTorch 2.0 documentation 。

(1)torch.nn.MaxPool2d类

                        
                          class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

                        
                      

(2)参数介绍

  • kernel_size(int or tuple) : 用于设置一个取最大值的窗口,如设置为3,那么会生成一个3×3的窗口 。

  • stride(int or tuple) : 默认值为kernel_size,步幅,和卷积层中的stride一样 。

  • padding(int or tuple) : 填充图像,默认填充的值为0 。

  • dilation(int) : 空洞卷积,即卷积核之间的距离。如卷积核的尺寸为3×3,dilation为1,那么返回一个大小为5×5的卷积核,卷积核每个元素与上下左右的元素之间空一格 。

  • return_indices(bool) : 一般用的很少,不做介绍 。

  • ceil_mode(bool) : 默认为False。为True时,输出的shape使用 ceil 格式(向上取整,即进一);为False时,输出的shape使用 floor 格式(向下取整).

2、最大池化操作

1. 最大池化操作举例(理论介绍)

假设有一个5×5的图像和一个3×3的池化核(kenel_size=3),如下图。池化过程就是将池化核与图像进行匹配。下面介绍最大池化的具体操作.

  • 首先用池化核覆盖图像,如下图。然后取到最大值,作为一个输出.

  • 上图为第一次最大池化操作,最大值为2。将2作为一个输出,如下图.

  • 由于本例未对stride进行设置,故stride采取默认值,即 stride=kernel_size=3 ,池化核移动如下图(移动方式与上上文中提到的卷积核移动方式相同,不再赘述)。由于池化核移动已超出范围,要不要取这3×2部分的最大值,取决于call_mode的值,若 ceil_mode=True ,则取最大值,即输出3;若 ceil_mode=False ,则不取这部分的值,即这一步不进行池化操作.

    • 假设 ceil_mode=True ,经过最大池化操作后,输出的结果如下图.

    • 假设 ceil_mode=False ,经过最大池化操作后,输出的结果如下图.

2. 操作前后的图像大小计算公式

跟卷积操作的计算公式一样。具体如下:

参数说明:

  • N: 图像的batch_size 。

  • C: 图像的通道数 。

  • H: 图像的高 。

  • W: 图像的宽 。

计算过程:

  • Input: \( (N,C_{in}​,H_{in}​,W_{in}​)\)  or  \((C_{in}​,H_{in}​,W_{in}​)\) 。

  • Output: \((N,C_{out}​,H_{out}​,W_{out}​)\)  or  \((C_{out}​,H_{out}​,W_{out}​)\) 。

    • 其中有:

      \(H_{out}​=⌊\frac{H_{in}​+2×padding[0]−dilation[0]×(kernel\_size[0]−1)−1​}{stride[0]}+1⌋\) 。

      \(W_{out}​=⌊\frac{W_{in}​+2×padding[1]−dilation[1]×(kernel\_size[1]−1)−1​}{stride[1]}+1⌋\) 。

看论文的时候,有些比如像padding这样的参数不知道,就可以用这条公式去进行推导 。

3. 最大池化操作代码举例

依然选取上面的例子,进行编程.

                        
                          import torch
from torch import nn
from torch.nn import MaxPool2d
input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)   #输入图像数据;与卷积操作不同的是,最大池化操作要求输入的图像数据是浮点数,而不是整数(为整数第23行会报错)
input=torch.reshape(input,(-1,1,5,5))     #构造图像数据,使其符合输入标准,即分别为(输入batch_size待定,1通道,大小为5×5)
print(input.shape)  #[Run] torch.Size([1, 1, 5, 5]);数据格式符合输入标准

#构造神经网络
class Demo(nn.Module):
    def __init__(self):
        super(Demo,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)  #设置最大池化函数,这里以ceil_mode=True为例

    def forward(self,input):
        output=self.maxpool1(input)  #将输入的数据(input)进行最大池化草子哦
        return output

demo=Demo()  #创建神经网络
output=demo(input)
print(output)
"""
[Run]
tensor([[[[2., 3.],
          [5., 1.]]]])

符合前面ceil_mode=True例子的输出结果一致
"""

                        
                      

4. 为什么要进行最大池化(最大池化的作用)

  • 最大程度地保留输入特征,并使数据量减小 。

  • 上述例子中输入图像为5×5,经过最大池化操作之后变成了3×3,甚至为1×1。使得图像特征得以保留,而数据量大大减少了,对整个网络来说参数减少了,运算速度也变快了 。

  • 打个比方,这就像看视频的时候,高清(输入图像)变(经过最大池化操作)标清(输出数据) 。

使用具体图片示例,介绍最大池化的作用:

                        
                          from torch import nn
from torch.nn import MaxPool2d
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("./dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloder=DataLoader(dataset,batch_size=64)

#构造神经网络
class Demo(nn.Module):
    def __init__(self):
        super(Demo,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)  #设置最大池化函数,这里以ceil_mode=True为例

    def forward(self,input):
        output=self.maxpool1(input)  #将输入的数据(input)进行最大池化草子哦
        return output

demo=Demo()  #创建神经网络

writer=SummaryWriter("logs_maxpool")
step=0

for data in dataloder:
    imgs,targets=data
    writer.add_images("input",imgs,step)
    output=demo(imgs)
    writer.add_images("output",output,step)
    step+=1
writer.close()

                        
                      

对比输入输出,可以看出图像更糊了 。

最后此篇关于深度学习(九)——神经网络:最大池化的作用的文章就讲到这里了,如果你想了解更多关于深度学习(九)——神经网络:最大池化的作用的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com