gpt4 book ai didi

并发编程---信号量线程同步

转载 作者:我是一只小鸟 更新时间:2023-07-18 14:34:09 25 4
gpt4 key购买 nike

引言

上文 编码技巧 --- 同步锁对象的选定 中,提到了在C#中,让线程同步有两种方式:

  • 锁(lock、Monitor等)
  • 信号量(EventWaitHandle、Semaphore、Mutex)

加锁是最常用的线程同步的方法,就不再讨论,本篇主要讨论使用信号量同步线程.

WaitHandle介绍

实际上,再C#中 EventWaitHandle 、 Semaphore 、 Mutex 都是抽象类 WaitHandle 的派生类,它提供了一组等待信号的方法和属性。如下图:

image.png

主要包含静态方法 SignalAndWait() , WaitAll() , WaitAny() 及一个虚方法 WaitOne() 。下面介绍一个这几个方法.

介绍这些方法之前,先简单介绍一下 WaitHandle 的派生类 EventWaitHandle ,该派生类有两个实现类 AutoResetEvent 和 ManualResetEvent ,其方法列表如下:

重点说一下, Set() 和 Reset()

  • Set()方法设置事件为有信号状态:当调用 Set() 时,它将被设置为终止状态,并允许一个或多个等待该事件的线程继续执行。
  • Reset()方法设置事件为无信号状态:当调用 Reset() 时,它将被设置为非终止状态,所有想要等待该事件的线程都将被阻塞,直到调用 Set() 方法使其变为终止状态。

注意:这里的有信号,无信号的意思类似于红绿灯,有信号你才能够通行,对于线程来说,有信号意味着可以接着往下运行,无信号则阻塞等待信号.

接下来的代码段演示皆使用 AutoResetEvent 进行演示.

SignalAndWait()

当调用 WaitHandle 的静态方法 SignalAndWait() 时,会使得当前线程等待一个 WaitHandle 对象的信号,同时设置另一个 WaitHandle 对象为有信号状态。当第一个 WaitHandle 对象收到信号时,当前线程继续执行,同时第二个 WaitHandle 对象变为无信号状态.

                        
                          static AutoResetEvent event1 = new AutoResetEvent(false);
static AutoResetEvent event2 = new AutoResetEvent(false);

static void Main(string[] args)
{
    Thread t1 = new Thread(new ThreadStart(Worker1));
    Thread t2 = new Thread(new ThreadStart(Worker2));

    t1.Start();
    t2.Start();

    Console.ReadLine();
}

static void Worker1()
{
    Console.WriteLine("线程1开始执行……");

    event1.WaitOne(); // 等待事件1的发生

    Console.WriteLine("线程1收到事件1的信号,继续执行……");

    WaitHandle.SignalAndWait(event1, event2); // 发送事件2的信号并等待事件2的发生

    Console.WriteLine("线程1收到事件2的信号,继续执行……");
}

static void Worker2()
{
    Console.WriteLine("线程2开始执行……");

    Thread.Sleep(2000); // 模拟线程2的执行时间

    Console.WriteLine("线程2发出事件1的信号……");

    event1.Set(); // 发送事件1的信号

    Thread.Sleep(2000); // 模拟线程2的执行时间

    Console.WriteLine("线程2发出事件2的信号……");

    WaitHandle.SignalAndWait(event2, event1); // 发送事件1的信号并等待事件1的发生

    Console.WriteLine("线程2收到事件1的信号,继续执行……");
}

                        
                      

输出:

                        
                          线程1开始执行……
线程2开始执行……
线程2发出事件1的信号……
线程1收到事件1的信号,继续执行……
线程2发出事件2的信号……
线程2收到事件1的信号,继续执行……
线程1收到事件2的信号,继续执行……

                        
                      

WaitAll()

当调用 WaitHandle 的静态方法 WaitAll() 时,它可以等待多个WaitHandle对象的信号,直到所有对象都收到信号或等待超时.

                        
                          static AutoResetEvent[] events = new AutoResetEvent[3]
{
    new AutoResetEvent(false),
    new AutoResetEvent(false),
    new AutoResetEvent(false)
};

static void Main(string[] args)
{
    Thread t1 = new Thread(new ThreadStart(Worker1));
    Thread t2 = new Thread(new ThreadStart(Worker2));

    t1.Start();
    t2.Start();

    Console.ReadLine();
}

static void Worker1()
{
    Console.WriteLine("线程1开始执行……");

    WaitHandle.WaitAll(events); // 等待所有事件的发生

    Console.WriteLine("线程1收到所有事件的信号,继续执行……");
}

static void Worker2()
{
    Console.WriteLine("线程2开始执行……");

    Thread.Sleep(2000); // 模拟线程2的执行时间

    Console.WriteLine("线程2发出事件1的信号……");

    events[0].Set(); // 发送事件1的信号

    Thread.Sleep(2000); // 模拟线程2的执行时间

    Console.WriteLine("线程2发出事件2的信号……");

    events[1].Set(); // 发送事件2的信号

    Thread.Sleep(2000); // 模拟线程2的执行时间

    Console.WriteLine("线程2发出事件3的信号……");

    events[2].Set(); // 发送事件3的信号
}

                        
                      

输出:

                        
                          线程1开始执行……
线程2开始执行……
线程2发出事件1的信号……
线程2发出事件2的信号……
线程2发出事件3的信号……
线程1收到所有事件的信号,继续执行……

                        
                      

WaitAny()

当调用 WaitHandle 的静态方法 WaitAny() 时,它可以等待多个WaitHandle对象中的任意一个对象收到信号,直到有一个对象收到信号或等待超时.

                        
                          static AutoResetEvent[] events = new AutoResetEvent[3]
{
    new AutoResetEvent(false),
    new AutoResetEvent(false),
    new AutoResetEvent(false)
};

static void Main(string[] args)
{
    Thread t1 = new Thread(new ThreadStart(Worker1));
    Thread t2 = new Thread(new ThreadStart(Worker2));

    t1.Start();
    t2.Start();

    Console.ReadLine();
}

static void Worker1()
{
    Console.WriteLine("线程1开始执行……");

    WaitHandle.WaitAny(events); // 等待任意事件的发生

    Console.WriteLine("线程1收到任意事件的信号,继续执行……");
}

static void Worker2()
{
    Console.WriteLine("线程2开始执行……");

    var randomIndex = new Random().Next(0, 2);

    Console.WriteLine("线程2发出任意一个事件的信号……");

    events[randomIndex].Set(); //发送任意一个事件的信号
}


                        
                      

输出:

                        
                          线程1开始执行……
线程2开始执行……
线程2发出任意一个事件的信号……
线程1收到任意事件的信号,继续执行……

                        
                      

WaitOne()

WaitOne() 方法上文中其实已经用到了,它就表示阻塞当前线程,等待当前 WaitHandle 对象收到信号,直到对象收到信号或等待超时。如果WaitHandle对象收到信号,WaitOne()方法返回true,否则返回false。使用简单就不在贴代码段.

派生类的异同

上面已经提到了 EventWaitHandle 、 Semaphore 、 Mutex 都是抽象类 WaitHandle 的派生类,它们的作用类似,但在使用和实现上有一些不同。下面我们来简单介绍下它们的异同点.

  1. EventWaitHandle:

    EventWaitHandle 有两种类型: AutoResetEvent 和 ManualResetEvent 。它们的区别在于 AutoResetEvent 在有信号时只通知一个等待线程,而 ManualResetEvent 在有信号时通知所有等待线程。 两者设置为终止状态的方式都是调用 Set() 方法.

  2. Semaphore 。

    Semaphore 可以用于多个线程之间的资源控制。 Semaphore 可以控制同时访问共享资源的线程数量。设置为终止状态的方式是调用 Release() 方法.

  3. Mutex 。

    Mutex 可以用于多个线程之间的互斥访问共享资源。 Mutex 可以保证同一时间只有一个线程可以访问共享资源。设置为终止状态的方式是调用 ReleaseMutex() 方法.

最后此篇关于并发编程---信号量线程同步的文章就讲到这里了,如果你想了解更多关于并发编程---信号量线程同步的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com