- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos 。
作为《JavaCV人脸识别三部曲》的终篇,今天咱们要开发一个实用的功能:有人出现在摄像头中时,应用程序在预览窗口标注出此人的身份,效果如下图所示:
简单来说,本篇要做的事情如下:
confidence和threshold是OpenCV的人脸识别中非常重要的两个概念,咱们先把这两个概念搞清楚,再去编码就非常容易了 。
假设,咱们用下面六张照片训练出包含两个类别的模型:
用一张新的照片去训练好的模型中做识别,如下图,识别结果有两部分内容:label和confidence 。
先说lable,这个好理解,与训练时的lable一致(回顾上一篇的代码,lable如下图红框所示),前面图中lable等于2,表示被判定为郭富城:
按照上面的说法,lable等于2就能确定照片中的人像是郭富城吗?
当然不能!!! 此时confidence字段就非常重要了,先看JavaCV源码中对confidence的解释,如下图红框所示,我的理解是:与lable值相关联的置信度,或者说 这张脸是郭富城的可能性 :
如果理解为 可能性 ,那么问题来了,这是个double型的值,这个值越大,表示可能性越大还是越小?
上图并没有明说,但是那一句 e.g. distance ,让我想起了机器学习中的K-means,此时我脑海中的画面如下: -若真如上图所示,那么显然confidence越小,是郭富城的可能性就越大了,接下来再去找一些权威的说法:
OpenCV的官方论坛有个 帖子 的说法如下图:代码中的 confidence 变量属于命名不当,其含义不是可信度,而是与模型中的类别的距离:
再看 第二个 解释,如下图红框,说得很清楚了,值越小,与模型中类别的相似度越高,0表示完全匹配:
再看一个 Stack Overflow的解释 :
至此,相信您对confidence已经足够理解了,lable等于2,confidence=30.01,意思是: 被识别照片与郭富城最相似,距离为30.01,距离越小,是郭富城的可能性越大 。
名称 | 链接 | 备注 |
---|---|---|
项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
package com.bolingcavalry.grabpush.extend;
import lombok.Data;
@Data
public class PredictRlt {
private int lable;
private double confidence;
}
package com.bolingcavalry.grabpush.extend;
import com.bolingcavalry.grabpush.Constants;
import org.bytedeco.opencv.global.opencv_imgcodecs;
import org.bytedeco.opencv.opencv_core.Mat;
import org.bytedeco.opencv.opencv_core.Size;
import org.bytedeco.opencv.opencv_face.FaceRecognizer;
import org.bytedeco.opencv.opencv_face.FisherFaceRecognizer;
import static org.bytedeco.opencv.global.opencv_imgcodecs.IMREAD_GRAYSCALE;
import static org.bytedeco.opencv.global.opencv_imgproc.resize;
/**
* @author willzhao
* @version 1.0
* @description 把人脸识别的服务集中在这里
* @date 2021/12/12 21:32
*/
public class RecognizeService {
private FaceRecognizer faceRecognizer;
// 推理结果的标签
private int[] plabel;
// 推理结果的置信度
private double[] pconfidence;
// 推理结果
private PredictRlt predictRlt;
// 用于推理的图片尺寸,要和训练时的尺寸保持一致
private Size size= new Size(Constants.RESIZE_WIDTH, Constants.RESIZE_HEIGHT);
public RecognizeService(String modelPath) {
plabel = new int[1];
pconfidence = new double[1];
predictRlt = new PredictRlt();
// 识别类的实例化,与训练时相同
faceRecognizer = FisherFaceRecognizer.create();
// 加载的是训练时生成的模型
faceRecognizer.read(modelPath);
// 设置门限,这个可以根据您自身的情况不断调整
faceRecognizer.setThreshold(Constants.MAX_CONFIDENCE);
}
/**
* 将Mat实例给模型去推理
* @param mat
* @return
*/
public PredictRlt predict(Mat mat) {
// 调整到和训练一致的尺寸
resize(mat, mat, size);
boolean isFinish = false;
try {
// 推理(这一行可能抛出RuntimeException异常,因此要补货,否则会导致程序退出)
faceRecognizer.predict(mat, plabel, pconfidence);
isFinish = true;
} catch (RuntimeException runtimeException) {
runtimeException.printStackTrace();
}
// 如果发生过异常,就提前返回
if (!isFinish) {
return null;
}
// 将推理结果写入返回对象中
predictRlt.setLable(plabel[0]);
predictRlt.setConfidence(pconfidence[0]);
return predictRlt;
}
}
package com.bolingcavalry.grabpush.extend;
import com.bolingcavalry.grabpush.Constants;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;
import static org.bytedeco.opencv.global.opencv_core.CV_8UC1;
import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
/**
* @author willzhao
* @version 1.0
* @description 检测工具的通用接口
* @date 2021/12/5 10:57
*/
public interface DetectService {
/**
* 根据传入的MAT构造相同尺寸的MAT,存放灰度图片用于以后的检测
* @param src 原始图片的MAT对象
* @return 相同尺寸的灰度图片的MAT对象
*/
static Mat buildGrayImage(Mat src) {
return new Mat(src.rows(), src.cols(), CV_8UC1);
}
/**
* 初始化操作,例如模型下载
* @throws Exception
*/
void init() throws Exception;
/**
* 得到原始帧,做识别,添加框选
* @param frame
* @return
*/
Frame convert(Frame frame);
/**
* 释放资源
*/
void releaseOutputResource();
}
package com.bolingcavalry.grabpush.extend;
import lombok.extern.slf4j.Slf4j;
import org.bytedeco.javacpp.Loader;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;
import java.io.File;
import java.net.URL;
import java.util.Map;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
/**
* @author willzhao
* @version 1.0
* @description 音频相关的服务
* @date 2021/12/3 8:09
*/
@Slf4j
public class DetectAndRecognizeService implements DetectService {
/**
* 每一帧原始图片的对象
*/
private Mat grabbedImage = null;
/**
* 原始图片对应的灰度图片对象
*/
private Mat grayImage = null;
/**
* 分类器
*/
private CascadeClassifier classifier;
/**
* 转换器
*/
private OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();
/**
* 检测模型文件的下载地址
*/
private String detectModelFileUrl;
/**
* 处理每一帧的服务
*/
private RecognizeService recognizeService;
/**
* 为了显示的时候更加友好,给每个分类对应一个名称
*/
private Map<Integer, String> kindNameMap;
/**
* 构造方法
* @param detectModelFileUrl
* @param recognizeModelFilePath
* @param kindNameMap
*/
public DetectAndRecognizeService(String detectModelFileUrl, String recognizeModelFilePath, Map<Integer, String> kindNameMap) {
this.detectModelFileUrl = detectModelFileUrl;
this.recognizeService = new RecognizeService(recognizeModelFilePath);
this.kindNameMap = kindNameMap;
}
/**
* 音频采样对象的初始化
* @throws Exception
*/
@Override
public void init() throws Exception {
// 下载模型文件
URL url = new URL(detectModelFileUrl);
File file = Loader.cacheResource(url);
// 模型文件下载后的完整地址
String classifierName = file.getAbsolutePath();
// 根据模型文件实例化分类器
classifier = new CascadeClassifier(classifierName);
if (classifier == null) {
log.error("Error loading classifier file [{}]", classifierName);
System.exit(1);
}
}
@Override
public Frame convert(Frame frame) {
// 由帧转为Mat
grabbedImage = converter.convert(frame);
// 灰度Mat,用于检测
if (null==grayImage) {
grayImage = DetectService.buildGrayImage(grabbedImage);
}
// 进行人脸识别,根据结果做处理得到预览窗口显示的帧
return detectAndRecoginze(classifier, converter, frame, grabbedImage, grayImage, recognizeService, kindNameMap);
}
/**
* 程序结束前,释放人脸识别的资源
*/
@Override
public void releaseOutputResource() {
if (null!=grabbedImage) {
grabbedImage.release();
}
if (null!=grayImage) {
grayImage.release();
}
if (null==classifier) {
classifier.close();
}
}
/**
* 检测图片,将检测结果用矩形标注在原始图片上
* @param classifier 分类器
* @param converter Frame和mat的转换器
* @param rawFrame 原始视频帧
* @param grabbedImage 原始视频帧对应的mat
* @param grayImage 存放灰度图片的mat
* @param kindNameMap 每个分类编号对应的名称
* @return 标注了识别结果的视频帧
*/
static Frame detectAndRecoginze(CascadeClassifier classifier,
OpenCVFrameConverter.ToMat converter,
Frame rawFrame,
Mat grabbedImage,
Mat grayImage,
RecognizeService recognizeService,
Map<Integer, String> kindNameMap) {
// 当前图片转为灰度图片
cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
// 存放检测结果的容器
RectVector objects = new RectVector();
// 开始检测
classifier.detectMultiScale(grayImage, objects);
// 检测结果总数
long total = objects.size();
// 如果没有检测到结果,就用原始帧返回
if (total<1) {
return rawFrame;
}
PredictRlt predictRlt;
int pos_x;
int pos_y;
int lable;
double confidence;
String content;
// 如果有检测结果,就根据结果的数据构造矩形框,画在原图上
for (long i = 0; i < total; i++) {
Rect r = objects.get(i);
// 核心代码,把检测到的人脸拿去识别
predictRlt = recognizeService.predict(new Mat(grayImage, r));
// 如果返回为空,表示出现过异常,就执行下一个
if (null==predictRlt) {
System.out.println("return null");
continue;
}
// 分类的编号(训练时只有1和2,这里只有有三个值,1和2与训练的分类一致,还有个-1表示没有匹配上)
lable = predictRlt.getLable();
// 与模型中的分类的距离,值越小表示相似度越高
confidence = predictRlt.getConfidence();
// 得到分类编号后,从map中取得名字,用来显示
if (kindNameMap.containsKey(predictRlt.getLable())) {
content = String.format("%s, confidence : %.4f", kindNameMap.get(lable), confidence);
} else {
// 取不到名字的时候,就显示unknown
content = "unknown(" + predictRlt.getLable() + ")";
System.out.println(content);
}
int x = r.x(), y = r.y(), w = r.width(), h = r.height();
rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);
pos_x = Math.max(r.tl().x()-10, 0);
pos_y = Math.max(r.tl().y()-10, 0);
putText(grabbedImage, content, new Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.5, new Scalar(0,255,0,2.0));
}
// 释放检测结果资源
objects.close();
// 将标注过的图片转为帧,返回
return converter.convert(grabbedImage);
}
}
protected CanvasFrame previewCanvas
/**
* 检测工具接口
*/
private DetectService detectService;
/**
* 不同的检测工具,可以通过构造方法传入
* @param detectService
*/
public PreviewCameraWithIdentify(DetectService detectService) {
this.detectService = detectService;
}
@Override
protected void initOutput() throws Exception {
previewCanvas = new CanvasFrame("摄像头预览和身份识别", CanvasFrame.getDefaultGamma() / grabber.getGamma());
previewCanvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
previewCanvas.setAlwaysOnTop(true);
// 检测服务的初始化操作
detectService.init();
}
@Override
protected void output(Frame frame) {
// 原始帧先交给检测服务处理,这个处理包括物体检测,再将检测结果标注在原始图片上,
// 然后转换为帧返回
Frame detectedFrame = detectService.convert(frame);
// 预览窗口上显示的帧是标注了检测结果的帧
previewCanvas.showImage(detectedFrame);
}
@Override
protected void releaseOutputResource() {
if (null!= previewCanvas) {
previewCanvas.dispose();
}
// 检测工具也要释放资源
detectService.releaseOutputResource();
}
@Override
protected int getInterval() {
return super.getInterval()/8;
}
public static void main(String[] args) {
String modelFileUrl = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml";
String recognizeModelFilePath = "E:\\temp\\202112\\18\\001\\faceRecognizer.xml";
// 这里分类编号的身份的对应关系,和之前训练时候的设定要保持一致
Map<Integer, String> kindNameMap = new HashMap();
kindNameMap.put(1, "Man");
kindNameMap.put(2, "Woman");
// 检测服务
DetectService detectService = new DetectAndRecognizeService(modelFileUrl,recognizeModelFilePath, kindNameMap);
// 开始检测
new PreviewCameraWithIdentify(detectService).action(1000);
}
程序运行起来后,请名为 Man 的群众演员A站在摄像头前面,如下图,识别成功:
接下来,请名为 Woman 的群众演员B过来,和群众演员A同框,如下图,同时识别成功,不过偶尔会识别错误,提示成 unknown(-1) :
再请一个没有参与训练的小群众演员过来,与A同框,此刻的识别也是准确的,小演员被标注为 unknown(-1) :
去看程序的控制台,发现FaceRecognizer.predict方法会抛出异常,幸好程序捕获了异常,不会把整个进程中断退出:
至此,整个《JavaCV人脸识别三部曲》全部完成,如果您是位java程序员,正在寻找人脸识别相关的方案,希望本系列能给您一些参考 。
另外《JavaCV人脸识别三部曲》是《JavaCV的摄像头实战》系列的分支,作为主干的《JavaCV的摄像头实战》依然在持续更新中,欣宸原创会继续与您一路相伴,学习、实战、提升 。
学习路上,你不孤单,欣宸原创一路相伴... 。
最后此篇关于JavaCV人脸识别三部曲之三:识别和预览的文章就讲到这里了,如果你想了解更多关于JavaCV人脸识别三部曲之三:识别和预览的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我使用的是linux的windows子系统,安装了ubuntu,bash运行流畅。 我正在尝试使用make,似乎bash 无法识别gcc。尝试将其添加到 PATH,但没有任何改变。奇怪的是 - cmd
ImageMagick 已正确安装。 WAMP 的“PHP 扩展”菜单也显示带有勾选的 php_imagick。除了 Apache 和系统环境变量外,phpinfo() 没有显示任何 imagick
我是这么想的,因为上限是 2^n,并且考虑到它们都是有限机,n 状态 NFA 和具有 2^n 或更少状态的 DFA 的交集将是有效。 我错了吗? 最佳答案 你是对的。 2^n 是一个上限,因此生成的
我有一个大型数据集,其中包含每日值,指示一年中的特定一天是否特别热(用 1 或 0 表示)。我的目标是识别 3 个或更多特别炎热的日子的序列,并创建一个包含每个日子的长度以及开始和结束日期的新数据集。
我有一个向量列表,每个向量看起来像这样 c("Japan", "USA", "country", "Japan", "source", "country", "UK", "source", "coun
是否有任何工具或方法可以识别静态定义数组中的缓冲区溢出(即 char[1234] 而不是 malloc(1234))? 昨天我花了大部分时间来追踪崩溃和奇怪的行为,最终证明是由以下行引起的: // e
我一直在尝试通过导入制表符分隔的文件来手动创建 Snakemake 通配符,如下所示: dataset sample species frr PRJNA493818_GSE120639_SRP1628
我一直在尝试通过导入制表符分隔的文件来手动创建 Snakemake 通配符,如下所示: dataset sample species frr PRJNA493818_GSE120639_SRP1628
我想录下某人的声音,然后根据我获得的关于他/她声音的信息,如果那个人再次说话,我就能认出来!问题是我没有关于哪些统计数据(如频率)导致人声差异的信息,如果有人可以帮助我如何识别某人的声音? 在研究过程
我希望我的程序能够识别用户何时按下“enter”并继续循环播放。但是我不知道如何使程序识别“输入”。尝试了两种方法: string enter; string ent = "\n"; dice d1;
我创建了这个带有一个参数(文件名)的 Bash 小脚本,该脚本应该根据文件的扩展名做出响应: #!/bin/bash fileFormat=${1} if [[ ${fileFormat} =~ [F
我正在寻找一种在 for 循环内迭代时识别 subview 对象的方法,我基本上通过执行 cell.contentView.subviews 从 UITableView 的 contentView 获
我正在尝试在 Swift 中使用 CallKit 来识别调用者。 我正在寻找一种通过发出 URL 请求来识别调用者的方法。 例如:+1-234-45-241 给我打电话,我希望它向 mydomain.
我将(相当古老的)插件称为“thickbox”,如下所述: 创建厚盒时,它包含基于查询的内容列表。 使用 JavaScript 或 jQuery,我希望能够访问 type 的值(在上面的示例中 t
我想编写一些可以接受某种输入并将其识别为方波、三角波或某种波形的代码。我还需要一些产生所述波的方法。 我确实有使用 C/C++ 的经验,但是,我不确定我将如何模拟所有这些。最终,我想将其转换为微 Co
我创建了一个 for 循环,用于在每个部分显示 8 个项目,但我试图在循环中识别某些项目。例如,我想识别前两项,然后是第五项和第六项,但我的识别技术似乎是正确的。 for (int i = 0; i
如何识别 UIStoryboard? 该类具有创建和实例化的方法,但我没有看到带有类似name 的@property。例如 获取 Storyboard对象 + storyboardWithName:b
如何确定所运行的SQLServer2005的版本 要确定所运行的SQLServer2005的版本,请使用SQLServerManagementStudio连接到SQLServer2005,然后运行
这个问题在这里已经有了答案: How to check whether an object is a date? (26 个答案) 关闭2 年前。 我正在使用一个 npm 模块,它在错误时抛出一个空
我正在制作一个使用 ActivityRecognition API 在后台跟踪用户 Activity 的应用,如果用户在指定时间段(例如 1 小时)内停留在同一个地方,系统就会推送通知告诉用户去散步.
我是一名优秀的程序员,十分优秀!