- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
大家好,我是小富~ 。
(一)好好的系统,为什么要分库分表?
(二)分库分表的 21 条法则,hold 住! 。
本文是《分库分表ShardingSphere5.x原理与实战》系列的第三篇文章,本文将为您介绍 ShardingSphere 的一些基础特性和架构组成,以及在 Springboot 环境下通过 JAVA编码 和 Yml配置 两种方式快速实现分库分表.
本文案例demo地址 。
shardingsphere 是一款开源的分布式关系型数据库中间件,为 Apache 的顶级项目。其前身是 sharding-jdbc 和 sharding-proxy 的两个独立项目,后来在 2018 年合并成了一个项目,并正式更名为 ShardingSphere.
其中 sharding-jdbc 为整个生态中最为经典和成熟的框架,最早接触分库分表的人应该都知道它,是学习分库分表的最佳入门工具.
如今的 ShardingSphere 已经不再是单纯代指某个框架,而是一个完整的技术生态圈,由三款开源的分布式数据库中间件 sharding-jdbc、sharding-proxy 和 sharding-sidecar 所构成。前两者问世较早,功能较为成熟,是目前广泛应用的两个分布式数据库中间件,因此在后续的文章中,我们将重点介绍它们的特点和使用方法.
为了回答这个问题,我整理了市面上常见的分库分表工具,包括 ShardingSphere 、 Cobar 、 Mycat 、 TDDL 、 MySQL Fabric 等,并从多个角度对它们进行了简单的比较.
Cobar 是阿里巴巴开源的一款基于MySQL的分布式数据库中间件,提供了分库分表、读写分离和事务管理等功能。它采用轮询算法和哈希算法来进行数据分片,支持分布式分表,但是不支持单库分多表.
它以 Proxy 方式提供服务,在阿里内部被广泛使用已开源,配置比较容易,无需依赖其他东西,只需要有Java环境即可。兼容市面上几乎所有的 ORM 框架,仅支持 MySQL 数据库,且事务支持方面比较麻烦.
Mycat 是社区爱好者在阿里 Cobar 基础上进行二次开发的,也是一款比较经典的分库分表工具。它以 Proxy 方式提供服务,支持分库分表、读写分离、SQL路由、数据分片等功能.
兼容市面上几乎所有的 ORM 框架,包括 Hibernate、MyBatis和 JPA等都兼容,不过,美中不足的是它仅支持 MySQL数据库,目前社区的活跃度相对较低.
TDDL 是阿里巴巴集团开源的一款分库分表解决方案,可以自动将SQL路由到相应的库表上。它采用了垂直切分和水平切分两种方式来进行分表分库,并且支持多数据源和读写分离功能.
TDDL 是基于 Java 开发的,支持 MySQL、Oracle 和 SQL Server 数据库,并且可以与市面上 Hibernate、MyBatis等 ORM 框架集成.
不过,TDDL仅支持一些阿里巴巴内部的工具和框架的集成,对于外部公司来说可能相对有些局限性。同时,其文档和社区活跃度相比 ShardingSphere 来说稍显不足.
MySQL Fabric 是 MySQL 官方提供的一款分库分表解决方案,同时也支持 MySQL其他功能,如高可用、负载均衡等。它采用了管理节点和代理节点的架构,其中管理节点负责实时管理分片信息,代理节点则负责接收并处理客户端的读写请求.
它仅支持 MySQL 数据库,并且可以与市面上 Hibernate、MyBatis 等 ORM 框架集成。MySQL Fabric 的文档相对来说比较简略,而且由于是官方提供的解决方案,其社区活跃度也相对较低.
ShardingSphere 成员中的 sharding-jdbc 以 JAR 包的形式下提供分库分表、读写分离、分布式事务等功能,但仅支持 Java 应用,在应用扩展上存在局限性.
因此,ShardingSphere 推出了独立的中间件 sharding-proxy,它基于 MySQL协议实现了透明的分片和多数据源功能,支持各种语言和框架的应用程序使用,对接的应用程序几乎无需更改代码,分库分表配置可在代理服务中进行管理.
除了支持 MySQL,ShardingSphere还可以支持 PostgreSQL、SQLServer、Oracle等多种主流数据库,并且可以很好地与 Hibernate、MyBatis、JPA等 ORM 框架集成。重要的是,ShardingSphere的开源社区非常活跃.
如果在使用中出现问题,用户可以在 GitHub 上提交PR并得到快速响应和解决,这为用户提供了足够的安全感.
通过对上述的 5 个分库分表工具进行比较,我们不难发现,就整体性能、功能丰富度以及社区支持等方面来看,ShardingSphere 在众多产品中优势还是比较突出的。下边用各个产品的主要指标整理了一个表格,看着更加直观一点.
ShardingSphere 的主要组成成员为 sharding-jdbc 、 sharding-proxy ,它们是实现分库分表的两种不同模式:
它是一款轻量级Java框架,提供了基于 JDBC 的分库分表功能,为客户端直连模式。使用sharding-jdbc,开发者可以通过简单的配置实现数据的分片,同时无需修改原有的SQL语句。支持多种分片策略和算法,并且可以与各种主流的ORM框架无缝集成.
它是基于 MySQL 协议的代理服务,提供了透明的分库分表功能。使用 sharding-proxy 开发者可以将分片逻辑从应用程序中解耦出来,无需修改应用代码就能实现分片功能,还支持多数据源和读写分离等高级特性,并且可以作为独立的服务运行.
我们先使用 sharding-jdbc 来快速实现分库分表。相比于 sharding-proxy,sharding-jdbc 适用于简单的应用场景,不需要额外的环境搭建等。下边主要基于 SpringBoot 的两种方式来实现分库分表,一种是通过 YML配置 方式,另一种则是通过纯 Java编码 方式( 不可并存 )。在后续章节中,我们会单独详细介绍如何使用 sharding-proxy 以及其它高级特性.
ShardingSphere 官网地址: https://shardingsphere.apache.org/ 。
在开始实现之前,需要对数据库和表的拆分规则进行明确。以对 t_order 表进行分库分表拆分为例,具体地,我们将 t_order 表拆分到两个数据库中,分别为 db1 和 db2 ,每个数据库又将该表拆分为三张表,分别为 t_order_1 、 t_order_2 和 t_order_3 .
db0
├── t_order_0
├── t_order_1
└── t_order_2
db1
├── t_order_0
├── t_order_1
└── t_order_2
引入必要的 JAR 包,其中最重要的是 shardingsphere-jdbc-core-spring-boot-starter 和 mysql-connector-java 这两个。为了保证功能的全面性和兼容性,以及避免因低版本包导致的不必要错误和调试工作,我选择的包版本都较高.
shardingsphere-jdbc-core-spring-boot-starter 是 ShardingSphere 框架的核心组件,提供了对 JDBC 的分库分表支持;而 mysql-connector-java 则是 MySQL JDBC 驱动程序的实现,用于连接MySQL数据库。除此之外,我使用了 JPA 作为持久化工具还引入了相应的依赖包.
<!-- jpa持久化工具 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
<version>2.7.6</version>
</dependency>
<!-- 必须引入的包 mysql -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.31</version>
</dependency>
<!-- 必须引入的包 ShardingSphere -->
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>5.2.0</version>
</dependency>
我个人是比较推荐使用YML配置方式来实现 sharding-jdbc 分库分表的,使用YML配置方式不仅可以让分库分表的实现更加简单、高效、可维护,也更符合 SpringBoot的开发规范.
在 src/main/resources/application.yml 路径文件下添加以下完整的配置,即可实现对 t_order 表的分库分表,接下来拆解看看每个配置模块都做了些什么.
spring:
shardingsphere:
# 数据源配置
datasource:
# 数据源名称,多数据源以逗号分隔
names: db0,db1
db0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://127.0.0.1:3306/shardingsphere-db1?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true
username: root
password: 123456
db1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://127.0.0.1:3306/shardingsphere-db0?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true
username: root
password: 123456
# 分片规则配置
rules:
sharding:
# 分片算法配置
sharding-algorithms:
database-inline:
# 分片算法类型
type: INLINE
props:
# 分片算法的行表达式(算法自行定义,此处为方便演示效果)
algorithm-expression: db$->{order_id > 4?1:0}
table-inline:
# 分片算法类型
type: INLINE
props:
# 分片算法的行表达式
algorithm-expression: t_order_$->{order_id % 4}
tables:
# 逻辑表名称
t_order:
# 行表达式标识符可以使用 ${...} 或 $->{...},但前者与 Spring 本身的属性文件占位符冲突,因此在 Spring 环境中使用行表达式标识符建议使用 $->{...}
actual-data-nodes: db${0..1}.t_order_${0..3}
# 分库策略
database-strategy:
standard:
# 分片列名称
sharding-column: order_id
# 分片算法名称
sharding-algorithm-name: database-inline
# 分表策略
table-strategy:
standard:
# 分片列名称
sharding-column: order_id
# 分片算法名称
sharding-algorithm-name: table-inline
# 属性配置
props:
# 展示修改以后的sql语句
sql-show: true
以下是 shardingsphere 多数据源信息的配置,其中的 names 表示需要连接的数据库别名列表,每添加一个数据库名就需要新增一份对应的数据库连接配置.
spring:
shardingsphere:
# 数据源配置
datasource:
# 数据源名称,多数据源以逗号分隔
names: db0,db1
db0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://127.0.0.1:3306/shardingsphere-db1?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true
username: root
password: 123456
db1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://127.0.0.1:3306/shardingsphere-db0?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true
username: root
password: 123456
rules 节点下为分片规则的配置, sharding-algorithms 节点为自定义的分片算法模块,分片算法可以在后边配置表的分片规则时被引用,其中:
database-inline
:自定义的分片算法名称; type
:该分片算法的类型,这里先以 inline 为例,后续会有详细章节介绍; props
:指定该分片算法的具体内容,其中 algorithm-expression
是该分片算法的表达式,即根据分片键值计算出要访问的真实数据库名或表名,。 db$->{order_id % 2} 这种为 Groovy 语言表达式,表示对分片键 order_id 进行取模,根据取模结果计算出db0、db1,分表的表达式同理.
spring:
shardingsphere:
# 规则配置
rules:
sharding:
# 分片算法配置
sharding-algorithms:
database-inline:
# 分片算法类型
type: INLINE
props:
# 分片算法的行表达式(算法自行定义,此处为方便演示效果)
algorithm-expression: db$->{order_id % 2}
table-inline:
# 分片算法类型
type: INLINE
props:
# 分片算法的行表达式
algorithm-expression: t_order_$->{order_id % 3}
tables 节点定义了逻辑表名 t_order 的分库分表规则。 actual-data-nodes 用于设置物理数据节点的数量.
db${0..1}.t_order_${0..3} 表达式意思此逻辑表在不同数据库实例中的分布情况,如果只想单纯的分库或者分表,可以调整表达式,分库 db${0..1} 、分表 t_order_${0..3} .
db0
├── t_order_0
├── t_order_1
└── t_order_2
db1
├── t_order_0
├── t_order_1
└── t_order_2
spring:
shardingsphere:
# 规则配置
rules:
sharding:
tables:
# 逻辑表名称
t_order:
# 行表达式标识符可以使用 ${...} 或 $->{...},但前者与 Spring 本身的属性文件占位符冲突,因此在 Spring 环境中使用行表达式标识符建议使用 $->{...}
actual-data-nodes: db${0..1}.t_order_${0..3}
# 分库策略
database-strategy:
standard:
# 分片列名称
sharding-column: order_id
# 分片算法名称
sharding-algorithm-name: database-inline
# 分表策略
table-strategy:
standard:
# 分片列名称
sharding-column: order_id
# 分片算法名称
sharding-algorithm-name: table-inline
database-strategy 和 table-strategy 分别设置了分库和分表策略; 。
sharding-column 表示根据表的哪个列(分片键)进行计算分片路由到哪个库、表中; 。
sharding-algorithm-name 表示使用哪种分片算法对分片键进行运算处理,这里可以引用刚才自定义的分片算法名称使用.
props 节点用于设置其他的属性配置,比如: sql-show 表示是否在控制台输出解析改造后真实执行的 SQL语句以便进行调试.
spring:
shardingsphere:
# 属性配置
props:
# 展示修改以后的sql语句
sql-show: true
跑个单测在向数据库中插入 10 条数据时,发现数据已经相对均匀地插入到了各个分片中.
如果您不想通过 yml 配置文件实现自动装配,也可以使用 ShardingSphere 的 API 实现相同的功能。使用 API 完成分片规则和数据源的配置,优势在于更加灵活、可定制性强的特点,方便进行二次开发和扩展.
下边是纯JAVA编码方式实现分库分表的完整代码.
@Configuration
public class ShardingConfiguration {
/**
* 配置分片数据源
* 公众号:程序员小富
*/
@Bean
public DataSource getShardingDataSource() throws SQLException {
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("db0", dataSource1());
dataSourceMap.put("db1", dataSource2());
// 分片rules规则配置
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
shardingRuleConfig.setShardingAlgorithms(getShardingAlgorithms());
// 配置 t_order 表分片规则
ShardingTableRuleConfiguration orderTableRuleConfig = new ShardingTableRuleConfiguration("t_order", "db${0..1}.t_order_${0..2}");
orderTableRuleConfig.setTableShardingStrategy(new StandardShardingStrategyConfiguration("order_id", "table-inline"));
orderTableRuleConfig.setDatabaseShardingStrategy(new StandardShardingStrategyConfiguration("order_id", "database-inline"));
shardingRuleConfig.getTables().add(orderTableRuleConfig);
// 是否在控制台输出解析改造后真实执行的 SQL
Properties properties = new Properties();
properties.setProperty("sql-show", "true");
// 创建 ShardingSphere 数据源
return ShardingSphereDataSourceFactory.createDataSource(dataSourceMap, Collections.singleton(shardingRuleConfig), properties);
}
/**
* 配置数据源1
* 公众号:程序员小富
*/
public DataSource dataSource1() {
HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName("com.mysql.cj.jdbc.Driver");
dataSource.setJdbcUrl("jdbc:mysql://127.0.0.1:3306/shardingsphere-db1?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true");
dataSource.setUsername("root");
dataSource.setPassword("123456");
return dataSource;
}
/**
* 配置数据源2
* 公众号:程序员小富
*/
public DataSource dataSource2() {
HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName("com.mysql.cj.jdbc.Driver");
dataSource.setJdbcUrl("jdbc:mysql://127.0.0.1:3306/shardingsphere-db0?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=true");
dataSource.setUsername("root");
dataSource.setPassword("123456");
return dataSource;
}
/**
* 配置分片算法
* 公众号:程序员小富
*/
private Map<String, AlgorithmConfiguration> getShardingAlgorithms() {
Map<String, AlgorithmConfiguration> shardingAlgorithms = new LinkedHashMap<>();
// 自定义分库算法
Properties databaseAlgorithms = new Properties();
databaseAlgorithms.setProperty("algorithm-expression", "db$->{order_id % 2}");
shardingAlgorithms.put("database-inline", new AlgorithmConfiguration("INLINE", databaseAlgorithms));
// 自定义分表算法
Properties tableAlgorithms = new Properties();
tableAlgorithms.setProperty("algorithm-expression", "t_order_$->{order_id % 3}");
shardingAlgorithms.put("table-inline", new AlgorithmConfiguration("INLINE", tableAlgorithms));
return shardingAlgorithms;
}
}
ShardingSphere 的分片核心配置类 ShardingRuleConfiguration ,它主要用来加载分片规则、分片算法、主键生成规则、绑定表、广播表等核心配置。我们将相关的配置信息 set到配置类,并通过 createDataSource 创建并覆盖 DataSource ,最后注入Bean.
使用Java编码方式只是将 ShardingSphere 预知的加载配置逻辑自己手动实现了一遍,两种实现方式比较下来,还是推荐使用YML配置方式来实现 ShardingSphere 的分库分表功能,相比于Java编码,YML配置更加直观和易于理解,开发者可以更加专注于业务逻辑的实现,而不需要过多关注底层技术细节.
@Getter
@Setter
public final class ShardingRuleConfiguration implements DatabaseRuleConfiguration, DistributedRuleConfiguration {
// 分表配置配置
private Collection<ShardingTableRuleConfiguration> tables = new LinkedList<>();
// 自动分片规则配置
private Collection<ShardingAutoTableRuleConfiguration> autoTables = new LinkedList<>();
// 绑定表配置
private Collection<String> bindingTableGroups = new LinkedList<>();
// 广播表配置
private Collection<String> broadcastTables = new LinkedList<>();
// 默认的分库策略配置
private ShardingStrategyConfiguration defaultDatabaseShardingStrategy;
// 默认的分表策略配置
private ShardingStrategyConfiguration defaultTableShardingStrategy;
// 主键生成策略配置
private KeyGenerateStrategyConfiguration defaultKeyGenerateStrategy;
private ShardingAuditStrategyConfiguration defaultAuditStrategy;
// 默认的分片键
private String defaultShardingColumn;
// 自定义的分片算法
private Map<String, AlgorithmConfiguration> shardingAlgorithms = new LinkedHashMap<>();
// 主键生成算法
private Map<String, AlgorithmConfiguration> keyGenerators = new LinkedHashMap<>();
private Map<String, AlgorithmConfiguration> auditors = new LinkedHashMap<>();
}
经过查看控制台打印的真实 SQL日志,发现在使用 ShardingSphere 进行数据插入时,其内部实现会先根据分片键 order_id 查询记录是否存在。如果记录不存在,则执行插入操作;如果记录已存在,则进行更新操作。看似只会执行10条插入SQL,但实际上需要执行20条SQL语句,多少会对数据库的性能产生一定的影响.
功能挺简单的,但由于 不同版本的 ShardingSphere 的 API 变化较大 ,网上类似的资料太不靠谱,本来想着借助 GPT 快点实现这段代码,结果差点和它干起来,最后还是扒了扒看了源码完成的.
可能有些小伙伴会有疑问,对于已经设置了分片规则的 t_order 表可以正常操作数据,如果我们的 t_user 表没有配置分库分表规则,那么在执行插入操作时会发生什么呢?
仔细看了下官方的技术文档,其实已经回答了小伙伴这个问题,如果只有部分数据库分库分表,是否需要将不分库分表的表也配置在分片规则中?官方回答: 不需要 .
我们创建一张 t_user 表,并且不对其进行任何分片规则的配置。在我的印象中没有通过设置 default-data-source-name 默认的数据源,操作未分片的表应该会报错的! 。
我们向 t_user 尝试插入一条数据,结果居然成功了?翻了翻库表发现数据只被插在了 db1 库里,说明没有走广播路由.
shardingsphere-jdbc 5.x版本 移除了原本的默认数据源配置,自动使用了默认数据源的规则,为验证我多增加了数据源,尝试性的调整了 db2 、 db0 、 db1 的顺序,再次插入数据,这回记录被插在了 db2 库,反复试验初步得出结论.
未分片的表默认会使用第一个数据源作为默认数据源,也就是 datasource.names 第一个.
spring:
shardingsphere:
# 数据源配置
datasource:
# 数据源名称,多数据源以逗号分隔
names: db2 , db1 , db0
本期我们对 shardingsphere 做了简单的介绍,并使用 yml 和 Java编码的方式快速实现了分库分表功能,接下来会按照文首的思维导图的功能逐一实现.
下期文章将是《分库分表ShardingSphere5.x原理与实战》系列的第四篇, 《分库分表默认分片策略、广播表、绑定表一网打尽》 .
本文案例demo地址 。
我是小富,下期见~ 。
最后此篇关于SpringBoot2种方式快速实现分库分表,轻松拿捏!的文章就讲到这里了,如果你想了解更多关于SpringBoot2种方式快速实现分库分表,轻松拿捏!的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!