- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
1) 实现过程 。
2) 距离的确定 。
该算法的「 距离 」在二维坐标轴就表示两点之间的距离,计算距离的公式有很多.
我们常用欧拉公式,即“ 欧氏距离 ”。(x 1 、x 2 、x 3 为特征) $$ \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2+...+(x_n - y_n)^2} =\sqrt{ \sum_{i=1} {n}{(x_i-y_i) 2}} $$ 。
算法 超参数 是 k(人为设置的参数为超参数),k 可以理解为标记数据周围几个数作为参考对象,参数选择需要根据数据来决定。(通过学习曲线找最优的k) 。
变种一 :默认情况下,在计算距离时,权重都是相同的,但实际上我们可以针对不同的邻居指定不同的距离权重,比如距离越近权重越高.
变种二 :使用一定半径内的点取代距离最近的 k 个点 。
# 红酒参数
rowdata = {'颜色深度':[14.13,13.2,13.16,14.27,13.24,12.07,12.43,11.79,12.37,12.04],
'酒精浓度': [5.64,4.28,5.68,4.80,4.22,2.76,3.94,3.1,2.12,2.6],
'品种': [0,0,0,0,0,1,1,1,1,1]}
# 0 代表 “黑皮诺”,1 代表 “赤霞珠”
wine_data = pd.DataFrame(rowdata)
def KNN(x): #x是输入的点 返回类别
# 1.把10个训练数据提取到data中
data = wine_data.iloc[:,:2].values #将前两列提取出来----data
# 2. 新数据点与10个一维数组的欧式距离
# 数据点第一个特征与10个点的欧式距离
a = ((x-data) ** 2)[:,0] #第一列抽取出来
# 数据点第二个特征与10个点的欧式距离
b = ((x-data) ** 2)[:,1] #第二列抽取出来
# 得到数据点与10个点的欧氏距离
Distance = np.sqrt(a+b)
np.sort(Distance)
# 3.排序找出最近的K个点 K=3
K3 = np.argsort(Distance)[:3] #得到开始表的索引值 6 1 4
# 4.判断类别
y = wine_data.品种
# 根据频数统计判断属于哪一类
return pd.Series([y[i] for i in K3]).value_counts().idxmax()
KNN([[12.3,4.1]])
# OUT:0
scikit-learn,简称 sklearn, 支持了包括 分类 、 回归 、 降维 和 聚类 四大机器学习算法,以及 特征提取 、 数据预处理 和 模型评估 三大模块.
主要设计原则: 1) 一致性 。
所有对象共享一个简单一致的界面(接口).
2)监控 。
3)防止类扩散 。
4) 合成 。
5)合理默认值 。
6)SKlearn KNN 实现 。
class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)[source]
参数名 | 形式 | 意义 |
---|---|---|
n_neighbors | int, default=5 | 近邻 个数 |
weights | {‘uniform’, ‘distance’}, callable or None, default=’uniform’ | • 'uniform':默认参数,不管远近权重都一样,就是最普通的 KNN 算法的形式。 • 'distance':权重和距离成反比,距离预测目标越近具有越高的权重。 • 自定义函数:自定义一个函数,根据输入的坐标值返回对应的权重,达到自定义权重的目的。 |
algorithm | {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’ | •'brute' :蛮力实现 • 'kd_tree':KD 树实现 KNN • 'ball_tree':球树实现 KNN • 'auto': 默认参数,自动选择合适的方法构建模型 |
leaf_size | int, default=30 | 当使用KD树或球树,它就是是停止建子树的叶子节点数量的阈值 |
p | int, default=2 | p=1为曼哈顿距离 p=2为欧式距离 |
metric | str or callable, default=’minkowski‘ | • 'euclidean' :欧式距离 • 'manhattan':曼哈顿距离 • 'chebyshev':切比雪夫距离 • 'minkowski': 闵可夫斯基距离,默认参数 |
n_jobs | int, default=None | 指定多少个CPU进行运算,-1表示全部都算 |
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)
clf = clf.fit(wine_data.iloc[:,0:2].values,wine_data.iloc[:,-1].values)
#测试单个点
clf.predict([[12.3,4.1]])
# OUT: array([0]) 属于“黑皮诺”红酒
最后此篇关于机器学习-KNN算法的文章就讲到这里了,如果你想了解更多关于机器学习-KNN算法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!