gpt4 book ai didi

【ACM组合数学|错排公式】写信

转载 作者:我是一只小鸟 更新时间:2023-04-17 14:31:22 33 4
gpt4 key购买 nike

题目链接: https://ac.nowcoder.com/acm/contest/54484/B 。

题意很简单,但是数据范围偏大.

错排公式

首先来推导一下错排公式:

\[D(n) = n!\sum_{k=0}^{n}\frac{(-1)^k}{k!} \]

设一个函数:

\[S_i表示一个排列中p_i = i的方案数 \]

那么我们可以知道:

\[D(n) = n! - |\cup_{i=1}^{n}S_i| \]

这个表示 所有方案数 减去 至少有一个位置放对的方案数 .

现在来考虑一下如何处理后面这个并集,并集往往是不好求的,而 交集会好求很多 ,所以在求并集的时候我们往往采取容斥原理将一个并集 转换成诸多交集的加减运算 .

我们用一个图可以来表示当 n = 3 的情况:

其中有:

\[|S_1 \cup S_2 \cup S_3| = |S_1| + |S_2| + |S_3| - |S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| + |S_1 \cap S2 \cap S_3| \]

扩展一下就可以得到下面的柿子:

\[|\cup_{i=1}^{n}S_i| = \sum_{k=1}^{n}(-1)^k\sum_{1\leq i_1 \leq i_2 \leq ... \leq i_k \leq n}|S_{i1}\cap S_{i2} ... \cap S_{ik}| \]

然后有:

\[\sum_{1\leq i_1 \leq i_2 \leq ... \leq i_k \leq n}|S_{i1}\cap S_{i2} ... \cap S_{ik}| = C_{n}^{k}(n-k)! \]

这个表示啥呢,左边这个柿子的含义其实是 i1 ~ ik 都放对了,其他位置上无所谓的方案数,就等同于在 n 个位置中选择 k 个放对,剩下的随便放的方案数.

所以可得下面的柿子:

\[|\cup_{i=1}^{n}S_i| = \sum_{k=1}^{n}(-1)^kC_{n}^{k}(n-k)! \]

然后化简得:

\[|\cup_{i=1}^{n}S_i| = \sum_{k=1}^{n}\frac{(-1)^k n!}{k!} \]

然后代回到一开始的答案表达式中:

\[D(n) = n! - \sum_{k=1}^{n}\frac{(-1)^k n!}{k!} \]

把 n! 提出来,再化简一下得到:

\[D(n) = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!} \]

回到本题

但是有这个柿子依然不好写这题,这题如果是 1e7 就可以直接O(n)写了,但是这题是 1e9 的数据范围,可以考虑一下分段打表(一般 要求函数可以递推 ),但是这个表达式好像不是很好打,我们来分析一下.

首先网上有一个比较有名递推式(证明略):

\[D(n) = (n-1)[D(n - 1) + D(n - 2)] \]

这个递推需要用到前两项,也就是说我们需要打两个表,然后才可以做,有点麻烦,但是其实是可以只用一项的.

我看网路上都没有用下面这种方式递推的,我在这里写一下.

我们考虑 D(n) -> D(n + 1) 这样的转移:

\[D(n) = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!} \]

\[D(n + 1) = (n + 1)! \sum_{k=0}^{n + 1}\frac{(-1)^k}{k!} \newline = (n + 1)![\sum_{k=0}^{n}\frac{(-1)^k}{k!} + \frac{(-1)^{n + 1}}{(n + 1)!}] \newline = (n + 1)!\sum_{k=0}^{n}\frac{(-1)^k}{k!} + (-1)^{n + 1} \newline = (n + 1) \times n!\sum_{k=0}^{n}\frac{(-1)^k}{k!} + (-1)^{n + 1} \newline = (n+1) \times D(n) + (-1)^{n+1}\]

然后令段大小 T = 1e7 打表打出 D(0), D(T), D(2T) ... D(100T) 就好了.

最终的复杂度是 O(n) 但是常数极小,所以可以过.

Code

                        
                          #include <bits/stdc++.h>
#define int long long
using namespace std;

const int p = 1e9 + 7, T = 1e7;

int a[110] =
{
1,824182295,933713113,474482547,930651136,251064654,637937211,229643390,307311871,448853213,
322273426,398890147,194914852,884947442,154199209,881788023,389699639,733217502,601739182,
372305477,213823357,713959988,498202615,196342945,324300550,154001751,974475946,540773759,
467881322,257531902,598680559,367927849,971346692,94577421,617165552,128327758,503709458,
253566817,820144401,13965056,82358069,805941568,533047638,69430220,686678173,297170813,
34546238,323435423,499126069,487532712,468899710,790590914,581347156,955359050,700529992,
518280890,98592091,64544225,988209678,422603955,40661679,174468756,573631136,757555557,
710709955,775098981,499158883,969149294,880429710,42564126,333697951,522067888,579797877,
528967798,717694718,309384913,31308092,316850320,220854491,878646494,963974981,377654637,
705101053,542246848,466289530,750036412,819636314,688721174,464087273,517164631,256789690,
482685016,276682441,473333947,340221393,762927538,624766601,984537252,977632075,34192646,
402182971,977005016
};

int mo(int x){return (x % p + p) % p;}

void solve()
{
	int n;cin >> n;
	int ans = a[n / T];
	for(int i = n / T * T + 1;i <= n; ++ i)ans = mo(ans * i % p + ((i & 1) ? -1 : 1));
	cout << ans << '\n';
}


void table()
{
	int x = 1;//d(0) = 1,这个有点特殊
    cout << x << ",";
    int cnt = 1;
    for(int i = 1;i <= 1e9; ++ i)
    {
        x = x * i % p;
        if(i & 1)x = (x - 1 + p) % p;
        else x = (x + 1) % p;
        
        if(i % T == 0)
        {
        	cout << x << ",";
    		cnt ++;
    	}
    	
        if(cnt % 10 == 0)
        {
        	cout << '\n';
        	cnt = 1;
        }
        
    }
}

signed main()
{
    table();
	solve();
	//return 0;
}

                        
                      

最后此篇关于【ACM组合数学|错排公式】写信的文章就讲到这里了,如果你想了解更多关于【ACM组合数学|错排公式】写信的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com