- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等) 。
note:项目链接以及码源见文末 。
了解赛题 。
赛题概况 。
数据概况 。
预测指标 。
分析赛题 。
数据读取pandas 。
分类指标评价计算示例 。
回归指标评价计算示例 。
EDA探索 。
特征工程 。
建模调参,相关原理介绍与推荐 。
模型融合 。
比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格.
来自 Ebay Kleinanzeigen 报废的二手车,数量超过 370,000,包含 20 列变量信息,为了保证 比赛的公平性,将会从中抽取 10 万条作为训练集,5 万条作为测试集 A,5 万条作为测试集 B。同时会对名称、车辆类型、变速箱、model、燃油类型、品牌、公里数、价格等信息进行 脱敏.
一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列.
train.csv 。
数字全都脱敏处理,都为label encoding形式,即数字形式 。
本赛题的评价标准为MAE(Mean Absolute Error)
$$ MAE=\frac{\sum_{i=1}^{n}\left|y_{i}-\hat{y} {i}\right|}{n} $$ 其中$y $代表第$i$个样本的真实值,其中$\hat{y}_{i}$代表第$i$个样本的预测值.
一般问题评价指标说明
什么是评估指标:
评估指标即是我们对于一个模型效果的数值型量化。(有点类似与对于一个商品评价打分,而这是针对于模型效果和理想效果之间的一个打分) 。
一般来说分类和回归问题的评价指标有如下一些形式:
分类算法常见的评估指标如下:
对于回归预测类常见的评估指标如下
平均绝对误差 平均绝对误差(Mean Absolute Error,MAE) :平均绝对误差,其能更好地反映预测值与真实值误差的实际情况,其计算公式如下: $$ MAE=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}_{i}\right| $$ 。
均方误差 均方误差(Mean Squared Error,MSE) ,均方误差,其计算公式为: $$ MSE=\frac{1}{N} \sum_{i=1} {N}\left(y_{i}-\hat{y}_{i}\right) $$ 。
R2(R-Square)的公式为 : 残差平方和: $$ SS_{res}=\sum\left(y_{i}-\hat{y} {i}\right)^{2} $$ 总平均值: $$ SS =\sum\left(y_{i}-\overline{y}_{i}\right)^{2} $$ 。
其中$\overline{y}$表示$y$的平均值 得到$R^2$表达式为: $$ R {2}=1-\frac{SS_{res}}{SS_{tot}}=1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right) {2}}{\sum\left(y_{i}-\overline{y}\right)^{2}} $$ $R^2$用于度量因变量的变异中可由自变量解释部分所占的比例,取值范围是 0~1,$R 2$越接近1,表明回归平方和占总平方和的比例越大,回归线与各观测点越接近,用x的变化来解释y值变化的部分就越多,回归的拟合程度就越好。所以$R 2$也称为拟合优度(Goodness of Fit)的统计量.
$y_{i}$表示真实值,$\hat{y} {i}$表示预测值,$\overline{y} $表示样本均值。得分越高拟合效果越好.
# 下载数据
!wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/dragonball/DM/data.zip
# 解压下载好的数据
!unzip data.zip
# 导入函数工具
## 基础工具
import numpy as np
import pandas as pd
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import jn
from IPython.display import display, clear_output
import time
warnings.filterwarnings('ignore')
%matplotlib inline
## 模型预测的
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
## 数据降维处理的
from sklearn.decomposition import PCA,FastICA,FactorAnalysis,SparsePCA
import lightgbm as lgb
import xgboost as xgb
## 参数搜索和评价的
from sklearn.model_selection import GridSearchCV,cross_val_score,StratifiedKFold,train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
## 通过Pandas对于数据进行读取 (pandas是一个很友好的数据读取函数库)
Train_data = pd.read_csv('/home/aistudio/dataset/used_car_train_20200313.csv', sep=' ')
TestA_data = pd.read_csv('/home/aistudio/dataset/used_car_testA_20200313.csv', sep=' ')
## 输出数据的大小信息
print('Train data shape:',Train_data.shape)
print('TestA data shape:',TestA_data.shape)
Train data shape: (150000, 31)
TestA data shape: (50000, 30)
## 通过.head() 简要浏览读取数据的形式
Train_data.head()
SaleID | name | regDate | model | brand | bodyType | fuelType | gearbox | power | kilometer | ... | v_5 | v_6 | v_7 | v_8 | v_9 | v_10 | v_11 | v_12 | v_13 | v_14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 736 | 20040402 | 30.0 | 6 | 1.0 | 0.0 | 0.0 | 60 | 12.5 | ... | 0.235676 | 0.101988 | 0.129549 | 0.022816 | 0.097462 | -2.881803 | 2.804097 | -2.420821 | 0.795292 | 0.914762 |
1 | 1 | 2262 | 20030301 | 40.0 | 1 | 2.0 | 0.0 | 0.0 | 0 | 15.0 | ... | 0.264777 | 0.121004 | 0.135731 | 0.026597 | 0.020582 | -4.900482 | 2.096338 | -1.030483 | -1.722674 | 0.245522 |
2 | 2 | 14874 | 20040403 | 115.0 | 15 | 1.0 | 0.0 | 0.0 | 163 | 12.5 | ... | 0.251410 | 0.114912 | 0.165147 | 0.062173 | 0.027075 | -4.846749 | 1.803559 | 1.565330 | -0.832687 | -0.229963 |
3 | 3 | 71865 | 19960908 | 109.0 | 10 | 0.0 | 0.0 | 1.0 | 193 | 15.0 | ... | 0.274293 | 0.110300 | 0.121964 | 0.033395 | 0.000000 | -4.509599 | 1.285940 | -0.501868 | -2.438353 | -0.478699 |
4 | 4 | 111080 | 20120103 | 110.0 | 5 | 1.0 | 0.0 | 0.0 | 68 | 5.0 | ... | 0.228036 | 0.073205 | 0.091880 | 0.078819 | 0.121534 | -1.896240 | 0.910783 | 0.931110 | 2.834518 | 1.923482 |
5 rows × 31 columns 。
## 通过 .info() 简要可以看到对应一些数据列名,以及NAN缺失信息
Train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 SaleID 150000 non-null int64
1 name 150000 non-null int64
2 regDate 150000 non-null int64
3 model 149999 non-null float64
4 brand 150000 non-null int64
5 bodyType 145494 non-null float64
6 fuelType 141320 non-null float64
7 gearbox 144019 non-null float64
8 power 150000 non-null int64
9 kilometer 150000 non-null float64
10 notRepairedDamage 150000 non-null object
11 regionCode 150000 non-null int64
12 seller 150000 non-null int64
13 offerType 150000 non-null int64
14 creatDate 150000 non-null int64
15 price 150000 non-null int64
16 v_0 150000 non-null float64
17 v_1 150000 non-null float64
18 v_2 150000 non-null float64
19 v_3 150000 non-null float64
20 v_4 150000 non-null float64
21 v_5 150000 non-null float64
22 v_6 150000 non-null float64
23 v_7 150000 non-null float64
24 v_8 150000 non-null float64
25 v_9 150000 non-null float64
26 v_10 150000 non-null float64
27 v_11 150000 non-null float64
28 v_12 150000 non-null float64
29 v_13 150000 non-null float64
30 v_14 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
## 通过 .columns 查看列名
Train_data.columns
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
'seller', 'offerType', 'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3',
'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12',
'v_13', 'v_14'],
dtype='object')
TestA_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 30 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 SaleID 50000 non-null int64
1 name 50000 non-null int64
2 regDate 50000 non-null int64
3 model 50000 non-null float64
4 brand 50000 non-null int64
5 bodyType 48587 non-null float64
6 fuelType 47107 non-null float64
7 gearbox 48090 non-null float64
8 power 50000 non-null int64
9 kilometer 50000 non-null float64
10 notRepairedDamage 50000 non-null object
11 regionCode 50000 non-null int64
12 seller 50000 non-null int64
13 offerType 50000 non-null int64
14 creatDate 50000 non-null int64
15 v_0 50000 non-null float64
16 v_1 50000 non-null float64
17 v_2 50000 non-null float64
18 v_3 50000 non-null float64
19 v_4 50000 non-null float64
20 v_5 50000 non-null float64
21 v_6 50000 non-null float64
22 v_7 50000 non-null float64
23 v_8 50000 non-null float64
24 v_9 50000 non-null float64
25 v_10 50000 non-null float64
26 v_11 50000 non-null float64
27 v_12 50000 non-null float64
28 v_13 50000 non-null float64
29 v_14 50000 non-null float64
dtypes: float64(20), int64(9), object(1)
memory usage: 11.4+ MB
## 通过 .describe() 可以查看数值特征列的一些统计信息
Train_data.describe()
SaleID | name | regDate | model | brand | bodyType | fuelType | gearbox | power | kilometer | ... | v_5 | v_6 | v_7 | v_8 | v_9 | v_10 | v_11 | v_12 | v_13 | v_14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 150000.000000 | 150000.000000 | 1.500000e+05 | 149999.000000 | 150000.000000 | 145494.000000 | 141320.000000 | 144019.000000 | 150000.000000 | 150000.000000 | ... | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 |
mean | 74999.500000 | 68349.172873 | 2.003417e+07 | 47.129021 | 8.052733 | 1.792369 | 0.375842 | 0.224943 | 119.316547 | 12.597160 | ... | 0.248204 | 0.044923 | 0.124692 | 0.058144 | 0.061996 | -0.001000 | 0.009035 | 0.004813 | 0.000313 | -0.000688 |
std | 43301.414527 | 61103.875095 | 5.364988e+04 | 49.536040 | 7.864956 | 1.760640 | 0.548677 | 0.417546 | 177.168419 | 3.919576 | ... | 0.045804 | 0.051743 | 0.201410 | 0.029186 | 0.035692 | 3.772386 | 3.286071 | 2.517478 | 1.288988 | 1.038685 |
min | 0.000000 | 0.000000 | 1.991000e+07 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.500000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -9.168192 | -5.558207 | -9.639552 | -4.153899 | -6.546556 |
25% | 37499.750000 | 11156.000000 | 1.999091e+07 | 10.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 75.000000 | 12.500000 | ... | 0.243615 | 0.000038 | 0.062474 | 0.035334 | 0.033930 | -3.722303 | -1.951543 | -1.871846 | -1.057789 | -0.437034 |
50% | 74999.500000 | 51638.000000 | 2.003091e+07 | 30.000000 | 6.000000 | 1.000000 | 0.000000 | 0.000000 | 110.000000 | 15.000000 | ... | 0.257798 | 0.000812 | 0.095866 | 0.057014 | 0.058484 | 1.624076 | -0.358053 | -0.130753 | -0.036245 | 0.141246 |
75% | 112499.250000 | 118841.250000 | 2.007111e+07 | 66.000000 | 13.000000 | 3.000000 | 1.000000 | 0.000000 | 150.000000 | 15.000000 | ... | 0.265297 | 0.102009 | 0.125243 | 0.079382 | 0.087491 | 2.844357 | 1.255022 | 1.776933 | 0.942813 | 0.680378 |
max | 149999.000000 | 196812.000000 | 2.015121e+07 | 247.000000 | 39.000000 | 7.000000 | 6.000000 | 1.000000 | 19312.000000 | 15.000000 | ... | 0.291838 | 0.151420 | 1.404936 | 0.160791 | 0.222787 | 12.357011 | 18.819042 | 13.847792 | 11.147669 | 8.658418 |
8 rows × 30 columns 。
TestA_data.describe()
SaleID | name | regDate | model | brand | bodyType | fuelType | gearbox | power | kilometer | ... | v_5 | v_6 | v_7 | v_8 | v_9 | v_10 | v_11 | v_12 | v_13 | v_14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 50000.000000 | 50000.000000 | 5.000000e+04 | 50000.000000 | 50000.000000 | 48587.000000 | 47107.000000 | 48090.000000 | 50000.000000 | 50000.000000 | ... | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 | 50000.000000 |
mean | 174999.500000 | 68542.223280 | 2.003393e+07 | 46.844520 | 8.056240 | 1.782185 | 0.373405 | 0.224350 | 119.883620 | 12.595580 | ... | 0.248669 | 0.045021 | 0.122744 | 0.057997 | 0.062000 | -0.017855 | -0.013742 | -0.013554 | -0.003147 | 0.001516 |
std | 14433.901067 | 61052.808133 | 5.368870e+04 | 49.469548 | 7.819477 | 1.760736 | 0.546442 | 0.417158 | 185.097387 | 3.908979 | ... | 0.044601 | 0.051766 | 0.195972 | 0.029211 | 0.035653 | 3.747985 | 3.231258 | 2.515962 | 1.286597 | 1.027360 |
min | 150000.000000 | 0.000000 | 1.991000e+07 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.500000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -9.160049 | -5.411964 | -8.916949 | -4.123333 | -6.112667 |
25% | 162499.750000 | 11203.500000 | 1.999091e+07 | 10.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 75.000000 | 12.500000 | ... | 0.243762 | 0.000044 | 0.062644 | 0.035084 | 0.033714 | -3.700121 | -1.971325 | -1.876703 | -1.060428 | -0.437920 |
50% | 174999.500000 | 52248.500000 | 2.003091e+07 | 29.000000 | 6.000000 | 1.000000 | 0.000000 | 0.000000 | 109.000000 | 15.000000 | ... | 0.257877 | 0.000815 | 0.095828 | 0.057084 | 0.058764 | 1.613212 | -0.355843 | -0.142779 | -0.035956 | 0.138799 |
75% | 187499.250000 | 118856.500000 | 2.007110e+07 | 65.000000 | 13.000000 | 3.000000 | 1.000000 | 0.000000 | 150.000000 | 15.000000 | ... | 0.265328 | 0.102025 | 0.125438 | 0.079077 | 0.087489 | 2.832708 | 1.262914 | 1.764335 | 0.941469 | 0.681163 |
max | 199999.000000 | 196805.000000 | 2.015121e+07 | 246.000000 | 39.000000 | 7.000000 | 6.000000 | 1.000000 | 20000.000000 | 15.000000 | ... | 0.291618 | 0.153265 | 1.358813 | 0.156355 | 0.214775 | 12.338872 | 18.856218 | 12.950498 | 5.913273 | 2.624622 |
8 rows × 29 columns 。
#### 1) 提取数值类型特征列名
numerical_cols = Train_data.select_dtypes(exclude = 'object').columns
print(numerical_cols)
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
'gearbox', 'power', 'kilometer', 'regionCode', 'seller', 'offerType',
'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
dtype='object')
categorical_cols = Train_data.select_dtypes(include = 'object').columns
print(categorical_cols)
Index(['notRepairedDamage'], dtype='object')
#### 2) 构建训练和测试样本
## 选择特征列
feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','creatDate','price','model','brand','regionCode','seller']]
feature_cols = [col for col in feature_cols if 'Type' not in col]
## 提前特征列,标签列构造训练样本和测试样本
X_data = Train_data[feature_cols]
Y_data = Train_data['price']
X_test = TestA_data[feature_cols]
print('X train shape:',X_data.shape)
print('X test shape:',X_test.shape)
X train shape: (150000, 18)
X test shape: (50000, 18)
## 定义了一个统计函数,方便后续信息统计
def Sta_inf(data):
print('_min',np.min(data))
print('_max:',np.max(data))
print('_mean',np.mean(data))
print('_ptp',np.ptp(data))
print('_std',np.std(data))
print('_var',np.var(data))
#### 3) 统计标签的基本分布信息
print('Sta of label:')
Sta_inf(Y_data)
Sta of label:
_min 11
_max: 99999
_mean 5923.327333333334
_ptp 99988
_std 7501.973469876635
_var 56279605.942732885
## 绘制标签的统计图,查看标签分布
plt.hist(Y_data)
plt.show()
plt.close()
#### 4) 缺省值用-1填补
X_data = X_data.fillna(-1)
X_test = X_test.fillna(-1)
## xgb-Model
xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, gamma=0, subsample=0.8,\
colsample_bytree=0.9, max_depth=7) #,objective ='reg:squarederror'
scores_train = []
scores = []
## 5折交叉验证方式
sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_ind,val_ind in sk.split(X_data,Y_data):
train_x=X_data.iloc[train_ind].values
train_y=Y_data.iloc[train_ind]
val_x=X_data.iloc[val_ind].values
val_y=Y_data.iloc[val_ind]
xgr.fit(train_x,train_y)
pred_train_xgb=xgr.predict(train_x)
pred_xgb=xgr.predict(val_x)
score_train = mean_absolute_error(train_y,pred_train_xgb)
scores_train.append(score_train)
score = mean_absolute_error(val_y,pred_xgb)
scores.append(score)
print('Train mae:',np.mean(score_train))
print('Val mae',np.mean(scores))
def build_model_xgb(x_train,y_train):
model = xgb.XGBRegressor(n_estimators=150, learning_rate=0.1, gamma=0, subsample=0.8,\
colsample_bytree=0.9, max_depth=7) #, objective ='reg:squarederror'
model.fit(x_train, y_train)
return model
def build_model_lgb(x_train,y_train):
estimator = lgb.LGBMRegressor(num_leaves=127,n_estimators = 150)
param_grid = {
'learning_rate': [0.01, 0.05, 0.1, 0.2],
}
gbm = GridSearchCV(estimator, param_grid)
gbm.fit(x_train, y_train)
return gbm
## Split data with val
x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)
print('Train lgb...')
model_lgb = build_model_lgb(x_train,y_train)
val_lgb = model_lgb.predict(x_val)
MAE_lgb = mean_absolute_error(y_val,val_lgb)
print('MAE of val with lgb:',MAE_lgb)
print('Predict lgb...')
model_lgb_pre = build_model_lgb(X_data,Y_data)
subA_lgb = model_lgb_pre.predict(X_test)
print('Sta of Predict lgb:')
Sta_inf(subA_lgb)
print('Train xgb...')
model_xgb = build_model_xgb(x_train,y_train)
val_xgb = model_xgb.predict(x_val)
MAE_xgb = mean_absolute_error(y_val,val_xgb)
print('MAE of val with xgb:',MAE_xgb)
print('Predict xgb...')
model_xgb_pre = build_model_xgb(X_data,Y_data)
subA_xgb = model_xgb_pre.predict(X_test)
print('Sta of Predict xgb:')
Sta_inf(subA_xgb)
## 这里我们采取了简单的加权融合的方式
val_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*val_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*val_xgb
val_Weighted[val_Weighted<0]=10 # 由于我们发现预测的最小值有负数,而真实情况下,price为负是不存在的,由此我们进行对应的后修正
print('MAE of val with Weighted ensemble:',mean_absolute_error(y_val,val_Weighted))
sub_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*subA_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*subA_xgb
## 查看预测值的统计进行
plt.hist(Y_data)
plt.show()
plt.close()
sub = pd.DataFrame()
sub['SaleID'] = TestA_data.SaleID
sub['price'] = sub_Weighted
sub.to_csv('./sub_Weighted.csv',index=False)
sub.head()
因篇幅内容限制,将原学习项目拆解成多个notebook方便学习,只需一键fork.
简单加权融合
stacking/blending
boosting/bagging(在xgboost,Adaboost,GBDT中已经用到)
训练:
预测:
二手车预测项目是非常经典项目,数据挖掘实践(二手车价格预测)的内容来自 Datawhale与天池联合发起的,现在通过整理和调整让更多对机器学习感兴趣可以上手实战一下 。
因篇幅内容限制,将原学习项目拆解成多个notebook方便学习,只需一键fork.
一键fork直接运行,所有项目码源都在里面 。
https://www.heywhale.com/mw/project/64367e0a2a3d6dc93d22054f 。
机器学习数据挖掘专栏: https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 。
参考链接:
https://github.com/datawhalechina/team-learning-data-mining/tree/master/SecondHandCarPriceForecast 。
最后此篇关于【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)的文章就讲到这里了,如果你想了解更多关于【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
接上篇 通过一个示例形象地理解C# async await 非并行异步、并行异步、并行异步的并发量控制 前些天写了两篇关于C# async await异步的博客, 第一篇博客看的人多,点
前言 在 SwiftUI 中,我们可以通过添加不同的交互来使我们的应用程序更具交互性,这些交互可以响应我们的点击,点击和滑动。 今天,我们将回顾SwiftUI基本手势:
今年我一直在想,2022年我想做些什么,做哪方面的改变,这周末在家终于想到了! 2021 轻描淡写 年底就一直想对2021年写一篇总结的,起码不得写个千八百字,可是思来想去不知道怎么写,直到最后都没想
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,因为
在 Eclipse 中使用 Java 进行开发时,它非常方便:您可以像自己一样附加源代码并探索核心 Java 代码。在 Visual Studio 中,我知道只有在调试时才能查看 .net 源代码(我
我正在尝试创建自己的字符串数据类型,谁能告诉我 typedef 和初始化做错了什么。 #include #include typedef char string[10]; int main(){
我期待开发一些东西来分析在服务器上运行的应用程序的 JVM 线程,要求如下: 访问在单独应用程序中运行的所有线程 打印线程栈 了解事件的详细信息 - 记录执行时间和方法详细信息(在特定线程中执行) 我
是否可以探索 Android 内部存储?我需要这个用于调试目的,以帮助我的开发工作。 最佳答案 您可以在模拟器上,或在 Root设备上。只是 adb shell 连接设备,然后从那里导航。 关于and
我有一个使用大量外键的 innoDB 表,但我们只想从中查找一些基本信息。 我做了一些研究,但还是迷路了。 如何判断我的主机是否有 Sphinx已经安装了吗?我没看到作为表格存储的选项方法(即 inn
我有一个创建列表的 GWT 代码(作为结果的网格),我将样式设置为 CSS 类,如 .test tr { height: 26px; } 现在...如果在渲染未完成或网格没有元素时我需要从代码
我需要使用 Javascript 和 HTML 为 Rally 敏捷工具开发一个 View 。我没有处理过在我作为开发人员的新职业中经常使用的网络语言。 我只是在探索他们的 API,但不知道如何探索他
我想了解 Hadoop 而不是一个黑盒子。我想探索 Hadoop 代码本身。我怎样才能不从主干下载 bundle ,我应该从哪里开始?任何帮助都会很有帮助谢谢舒佳特 最佳答案 Hadoop 代码在 S
想象一下这样的情况。您获得了一些遗留代码或获得了一些新框架。您需要尽快调查并了解如何使用此代码。没有机会向以前的开发人员寻求帮助。什么是最佳实践/方法/方式/步骤/工具(首选 .NET Framewo
我注意到我的 git 存储库中的某些 makefile 缺少变量定义的问题,我想搜索所有提交历史以查找我的变量 TESTDIR 在变更集中出现的位置 我该怎么做? 干杯 最佳答案 你可以使用 git
有什么方法可以探索 GO 包吗? 在 java 中,我使用“javap java.lang.String”命令来查看类内部的方法。像这样,有没有命令是他们用 GO 语言写的? 我在谷歌中搜索了相同的内
我注意到 docker 我需要了解容器内发生了什么或其中存在哪些文件。一个示例是从 docker 索引下载图像 - 您不知道图像包含什么,因此无法启动应用程序。 理想的情况是能够通过 ss
近日,华为 分析服务 6.9.0版本发布,正式上线 探索能力 。开发者可自由定义与配置分析模型,支持报告实时预览,数据洞察体验更加灵活与便捷. 新上线的探索能力中,有漏斗分析、事件归因、会话路径分析
我有一个 4 列的 excel 2010 电子表格。 A 列:我销售的产品的 UPC 代码列表。大约300行。 B 列:公式(稍后会详细介绍) C 列:另一个 UPC 代码列表。这些 UPC 代码大约
我有 3 个表格如下: CREATE TABLE USER_STATUS ("UID" varchar2(7), "STAT_ID" varchar2(11)) ; INSERT ALL IN
有什么方法可以探索 java 脚本对象(如 telerik 菜单或任何其他第 3 方对象)的属性和/或功能?我可以通过调试和破坏然后在 watch 中添加对象或在 VS 中使用智能感知来实现。 我使用
我是一名优秀的程序员,十分优秀!