gpt4 book ai didi

《软件方法》读后感

转载 作者:我是一只小鸟 更新时间:2023-04-07 22:31:42 32 4
gpt4 key购买 nike

前言

近日,苦于不知道该怎么提升自己了,在原来老大的建议下,决定去学习一些关于建模和软件设计领域的书籍,来解决解决自己“感觉不对,但是说不清楚为什么不对”以及“感觉这么搞就对了,但是不知道为什么这么去规划,这么去划分就对” 。

第一本看的是潘加宇老师的《软件方法(上)业务建模和需求》,本篇读后感不再对文里的概念和内容一一赘述,只说说个人提炼到的收获 。

业务系统是人脑系统的映射

这是一个很关键的概念,也是让我们认清业务系统的本质,所以我们讨论很多问题是,也就有了依据.

我们平时所看到的软件系统,都以业务系统为主,他们要么是人脑系统的替代,要么是现实流程的表示,明白了这一点本质以后,我们对系统的边界和其中逻辑的合理性,就可以有了一个标尺。而不是“我觉得这里这么做不对,这个逻辑不对,但是具体又说不出来哪里不对,反正会出问题,这里不合理”.

我们如何用这个标尺来评价问题呢?举一个笔者了解到的例子,一套志愿填报辅助系统,其中有个“一键填报”的功能,智能推荐一些志愿,但是其推荐的逻辑竟然是选择一批志愿后,经过各种一系列花里胡哨的随机操作来“看似”随机得到一些数据,推荐给用户.

我们通过这个观念去思考这个问题,难道一个志愿填报报考专家,在帮助一名学生选择要填报的院校时,会一直“随机”挑选一些院校,而不是根据某些“标准”吗?

用潘加宇老师的话来说,这样的需求既不符合系统的“愿景”,也不符合涉众的“需求”,系统的愿景绝对不是随机给用户返回一些数据,系统涉众(系统的买家)的需求也绝对不是你给他随机返回一些数据.

作为一个志愿填报系统,系统的愿景一定是帮助用户填报志愿,指标可以是“更快的填报,更好的填报,更准的填报”,涉众的需求,也一定就是你的愿景.

阿布思考法

                        
                          在软件开发团队中,当有人提出新的想法时,经常会被马上否定“这太难了,这做不了”,最终得到一个平庸的、毫无竞争力的系统。学会像阿布一样思考,有助于克服普通人因资源受限而不敢展开想象的思维障碍。阿布思考法分两步:

(1)假设有充足的资源去解决问题,得到一个完美的方案;

(2)用手上现有的资源去山寨这个完美方案。

如果有一个方案,花费完美方案1%的资源,能达到完美方案20%的效果。这个方案已经是目前最好的方案了,因为它是在突破思维限制以后一步步往后退得来的。


                        
                      

在我们平时讨论需求或者功能时,总是疏于讨论或者思考,也许这是国内软件公司发展时间较短带来统一的弊端。我们总是因为排期,或者上来就带入思路考虑实现的复杂度,来导致最后的方案不尽人意,其实这种思考方式只是从业者经验的浓缩,每个人的想法和理由都带着自己“私货”,产品经理一般没有能力和时间考虑的过于完整,项目经理在意项目的时间,研发经理在意实现的复杂度带来的系统问题,也在意项目的时间.

但是这种考虑问题的角度,不利于公司的发展和软件价值的实现,这里就涉及到了“大部分企业中层领导的利益价值和企业整体的利益价值是矛盾的”这个比较大的问题。我们就不深入讨论了。但是站在软件系统本身的价值来看,我们应该使用阿布思考法来考虑问题,即:尽可能先得到一个完美的方案,再考虑其中无法实现的地方去山寨.

我们举一个具体例子来看待这两种思考方式的区别,假设我们现在要研发一套自动驾驶技术的全套方案,按照阿布思考法,我们会从“如何才是完美的自动驾驶”这个点来考虑问题,考虑出需要的如31套各个细节子方案后,再依次对子方案找到目前最好的替代方案,最后得到了一套“目前时代下最好的自动驾驶系统”.

如果使用通常的思考路径去考虑,会发现在一开始就寸步难行,我们不知道一套自动驾驶技术方案要包括哪些方案,就算去思考,得到的也是支离破碎的一些方案,甚至落地的时候才会发现:“哦,这里原来少了个这个东西,需要再考虑下这里怎么实现”。要么就干脆先照抄友商,然后在UI、交互等方面做点“微创新”。但是如果没有友商呢?如果你是二次创业呢?这种思考方式无法帮你领会到新的东西,也无法帮你找到终极的方向.

最后此篇关于《软件方法》读后感的文章就讲到这里了,如果你想了解更多关于《软件方法》读后感的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com