- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
通过使用mnist(AI界的helloworld)手写数字模型训练集,了解下AI工作的基本流程.
本例子,要基于mnist数据集(该数据集包含了【0-9】的模型训练数据集和测试数据集)来完成一个手写数字识别的小demo.
mnist数据集,图片大小是28*28的黑白。包含了6w 训练数据和1w验证数据.
麻雀虽小五脏俱全。通过这个CV类型的demo需求,我们会学到神经网络模型.
从数据加载,到数据预处理,再到训练模型,保存模型。然后再通过模型来预测我们输入的图片数字.
通过整个过程下来,对于像我这样初识AI深度学习者来说,可以有一个非常好的体感.
我们通过keras+tensorflow2.0来上手.
keras 框架,提供了现成的方法来获取mnist数据集 。
(x_train_image, y_train_label), (x_test_image, y_test_label) = mnist.load_data()
这个方法会返回两组数据集 train_image,train_label ,训练数据集、分类标签 x_test_image, y_test_label ,验证数据集、分类标签 。
要想让机器识别一个图片,需要对图片进行像素化,将像素数据转换成 张量 矩阵数据.
mnist.load_data() 返回的就是已经转换好的张量矩阵数据.
(在python中,通过NumPy多维数组表示。) 。
我们这个demo属于AI for CV 方向.
CV信息首先要像素化处理,拿到张量信息.
# 转换成一维向量 28*28=784
x_train = x_train_image.reshape(60000, 784)
x_test = x_test_image.reshape(10000, 784)
# 标准化0-1
x_Test_normalize = x_test.astype('float32') / 255
x_Train_normalize = x_train.astype('float32') / 255
通过reshape方法将三维转换成二维,同时通过量化将计算数据缩小但是不影响模型训练识别。 (mnist图片数据是黑白,位深为8位,0-255表示像素信息).
通过可视化,我们能大概看到图片的数字特征是怎么被感知到的.
同时将label标签数据转换成0-1的矩阵.
# 将训练集和测试集标签都进行独热码转化
y_TrainOneHot = np_utils.to_categorical(y_train_label)
y_TestOneHot = np_utils.to_categorical(y_test_label)
# 建立Sequential 模型
model = Sequential()
# 建立输入层、隐藏层
model.add(Dense(units=256,input_dim=784,kernel_initializer='normal',activation='relu'))
# 建立输出层
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))
# 定义模型训练参数
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
定义神经网络模型参数。这里每一个参数都是一个非常深的学科,但是工程使用了解下就可以了.
# 开始训练
train_history = model.fit(x=x_Train_normalize, y=y_TrainOneHot,
validation_split=0.2, epochs=10, batch_size=200, verbose=2)
# 显示训练过程
show_train_history(train_history, 'accuracy', 'val_accuracy')
随着训练次数不断增加,整个精确度也越来越高.
我们看下训练过程的日志.
Epoch 1/10
240/240 - 3s - loss: 0.1211 - accuracy: 0.8309 - val_loss: 0.0564 - val_accuracy: 0.9228 - 3s/epoch - 11ms/step
Epoch 2/10
240/240 - 1s - loss: 0.0492 - accuracy: 0.9312 - val_loss: 0.0392 - val_accuracy: 0.9470 - 831ms/epoch - 3ms/step
Epoch 3/10
240/240 - 1s - loss: 0.0360 - accuracy: 0.9495 - val_loss: 0.0313 - val_accuracy: 0.9570 - 890ms/epoch - 4ms/step
Epoch 4/10
240/240 - 1s - loss: 0.0286 - accuracy: 0.9598 - val_loss: 0.0278 - val_accuracy: 0.9610 - 900ms/epoch - 4ms/step
Epoch 5/10
240/240 - 1s - loss: 0.0239 - accuracy: 0.9675 - val_loss: 0.0243 - val_accuracy: 0.9679 - 1s/epoch - 5ms/step
Epoch 6/10
240/240 - 1s - loss: 0.0204 - accuracy: 0.9723 - val_loss: 0.0224 - val_accuracy: 0.9698 - 1s/epoch - 5ms/step
Epoch 7/10
240/240 - 1s - loss: 0.0177 - accuracy: 0.9772 - val_loss: 0.0210 - val_accuracy: 0.9714 - 1s/epoch - 4ms/step
Epoch 8/10
240/240 - 1s - loss: 0.0155 - accuracy: 0.9805 - val_loss: 0.0201 - val_accuracy: 0.9729 - 984ms/epoch - 4ms/step
Epoch 9/10
240/240 - 1s - loss: 0.0137 - accuracy: 0.9833 - val_loss: 0.0189 - val_accuracy: 0.9742 - 1s/epoch - 5ms/step
Epoch 10/10
240/240 - 1s - loss: 0.0122 - accuracy: 0.9861 - val_loss: 0.0182 - val_accuracy: 0.9751 - 975ms/epoch - 4ms/step
可以看到,每一轮训练, loss 的值在逐步变小, accuracy 在逐步增加.
每一次训练,模型中的损失函数在计算出一个参数给到优化器进行反向传播,不断的调整神经元的权重.
模型训练好之后,需要用测试数据集来验证模型的准确度.
scores = model.evaluate(x_Test_normalize, y_TestOneHot)
print('accuracy=', scores[1])
accuracy= 0.975600004196167
mode.save()
model.save('model.h5') #也可以保存到具体的文件中
保存的模型里面具体是什么,了解神经网络原理之后,大概能明白。其实模型里最重要的是 神经元的权重值 这个demo的模型我放到这里了。 ( https://gitee.com/wangqingpei/blogimages/blob/master/mnist-helloworld/test/model-mnist/model.h5) 。
我们准备几个手写的数字测试下.
读取本地图片文件 。
def get_local_image():
img = Image.open('3.png')
img = img.convert('L').resize((28, 28))
img_array = np.array(img)
# 将像素值转换为0-1之间的浮点数
img_array = img_array.astype('float32') / 255.0
img_array_result = np.reshape(img_array, (1, 784))
return img_array_result
加载模型进行预测 。
def autoNumberWord():
model = load_model("/Users/wangqingpei/Downloads/test/model-mnist/model.h5")
img = get_local_image()
prediction = model.predict(img)
prediction_result = np.argmax(prediction)
print('本地文件预测:', prediction_result)
240/240 - 1s - loss: 0.0130 - accuracy: 0.9843 - val_loss: 0.0183 - val_accuracy: 0.9755 - 848ms/epoch - 4ms/step
Epoch 10/10
240/240 - 1s - loss: 0.0116 - accuracy: 0.9866 - val_loss: 0.0177 - val_accuracy: 0.9761 - 873ms/epoch - 4ms/step
313/313 [==============================] - 1s 2ms/step - loss: 0.0167 - accuracy: 0.9767
accuracy= 0.9767000079154968
1/1 [==============================] - 0s 116ms/step
Backend MacOSX is interactive backend. Turning interactive mode on.
本地文件预测: 3
在学习过程中,遇到问题要改变习惯,用chartGPT。~_~ 。
在学习这个demo的时候,关于加载本地图片的地方我搞了半天不行,后来求助chartGPT,还是很方便的.
未来AI工具肯定是越来越产品化,易使用。 但是,要想跟AI对话,需要对特定的领域有一定的理解。Prompt Engineer 也一定是趋势.
最后此篇关于keras图片数字识别入门AI机器学习的文章就讲到这里了,如果你想了解更多关于keras图片数字识别入门AI机器学习的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!