- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
系列文章目录和关于我 。
在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流.
限流 *的目的是在遇到流量高峰期或者流量突增(流量尖刺)时,通过对流量速率进行限制,当达到限制速率时,可以拒绝服务(定向到错误页或告知资源没有了)、排队或等待(比如秒杀、评论、下单)、降级(返回兜底数据或默认数据,如商品详情页库存默认有货) 。
笔者碰到这样的一道题,有下面的接口,需要实现1s秒只可以申请max次资源,需要考虑到 并发性能 .
显然这是一个限流器,网上有许多博主使用 锁 来实现,笔者将使用juc中的原子类,使用 自旋+cas 实现。并不是说自旋+cas 一定优于锁(自旋是cpu操作,在并发很高的时候会浪费cpu资源),但是相对于锁可以减少用户态到内核态的切换(这是由于java线程和操作系统线程是1比1的模型,上锁是需要切换到内核态的,尽管synchronized 具备锁升级,但是如果并发高了,最终还是重量级锁,依旧具备开销)笔者的cas都没有自定义cas次数,实际使用应该是自旋若干次就放弃,或者切换为使用锁的方式。并且这里都是单机的限流,分布式的限流需要使用其他中间件,如redis实现.
而且在并发很高,很极限的情况下,这种cas的方式存在bug,所以成熟的实现如gauva的限流器,是使用synchronized实现的.
当前接口限定1s只可以提供n次服务,对于此需求,我们很直观的可以想到使用属性记录当前是第几秒,并且记录这一秒内请求了多少次.
在指定周期内累加访问次数,当访问次数达到设定的阈值时,触发限流策略,当进入下一个时间周期时会将访问次数清零 。
优点:简单直接 。
缺点:临界问题 。
如果在0.5 1s内请求max次,从1s 1.5s请求max次,这样可以实现在0.5~1.5这一秒内请求来到2max次.
首先我们要记录 在x秒 请求了 y次 ,并且这两个值必须是原子的.
这里我们使用 AtomicStampedReference ( JUC源码学习笔记4——原子类,CAS,Volatile内存屏障,缓存伪共享与UnSafe相关方法 中讲到过),此类本意是为了防止cas的ABA问题,其中会记录值和对应的 版本 ,并且其 compareAndSet 方法可以同时更新值和对应的版本,这里我们使用版本表示当前是多少秒,请求多少次使用 AtomicInteger 记录,方便我们在同一秒的时候更新请求数量.
public class CountRateLimiter implements RateLimiter {
/**
* 一秒可以接受多少个请求
*/
private final int numAcceptablePerSecond;
/***
* 版本号对应秒数
* 里面的 AtomicInteger 记录这一秒范围内的请求数量
*/
private final AtomicStampedReference<AtomicInteger> helper;
public CountRateLimiter(int numAcceptablePerSecond) {
this.numAcceptablePerSecond = numAcceptablePerSecond;
this.helper =
new AtomicStampedReference<>(new AtomicInteger(numAcceptablePerSecond), -1);
}
@Override
public boolean acquire(int n) {
//不要太过分了
if (n > numAcceptablePerSecond) {
return false;
}
//上一次请求是多少秒的请求
int oldSeconds = helper.getStamp();
//当前多少秒
int currentSeconds = currentSeconds();
//不是同一秒的请求
//如果和当前不是一个版本(意味着不是同一秒) 那么cas 修改版本并重置许可数量
if (oldSeconds != currentSeconds) {
//原剩余的许可数量
AtomicInteger oldPermits = helper.getReference();
//cas 修改 同时修改版本,并且扣减数量
if (helper.compareAndSet(oldPermits,
//新许可的数量为 numAcceptablePerSecond - n
new AtomicInteger(numAcceptablePerSecond - n), oldSeconds, currentSeconds)) {
//cas 成功 那么说明成功 拿到令牌
return true;
}
}
//到这里说明 是同一秒(oldSeconds == currentSeconds)
//或者上面的if存在多线程竞争当前线程竞争失败 其他线程重置了计数器 ==> 那么cas 减少许可数量
//这里判断了一下 当前秒还是相等的,避免由于gc在第一个if中停留太久,比如第一秒线程A和B进入到第一个if,线程B成功了,但是线程A失败了,并且暂停了2s,出来的时候时间已经是3s了,我们不能让1s的请求占用3s时候的令牌数
return currentSeconds() == currentSeconds &&
//最后这里存在问题 如果在0.99999s的请求来到这里,但是时间来到1s,这个cas才成功,那么0.99999s的请求将打过来。导致1s的qps大于max
helper.getReference().addAndGet(-n) >= 0;
}
private static int currentSeconds() {
return (int) ((System.currentTimeMillis() / 1000) % Integer.MAX_VALUE);
}
}
为了避免计数器中的临界问题,让 限制更加平滑 ,将固定窗口中分割出多个小时间窗口,分别在每个小的时间窗口中记录访问次数,然后根据时间将窗口往前滑动并删除过期的小时间窗口.
计数器算法,可以看做只有两个窗口,因此在两个窗口边界的时候会出现临界问题。而滑动窗口统计当前时间处于的1s内产生了多少次请求,避免了临界问题 。
/**
* 滑动窗口限流器
* <p>
* 假设指定窗口总时长 为 1s 可以接受 10个请求,窗口分为5格
* 说明单格时间长度为200毫秒
* |_____|_____|_____|_____|_____|
* 0 200 400 600 800 1000
* <p>
* 当前时间为 500毫秒 那么落在 (500/200)%5 也就是第二格
* 那么500 毫秒是否可以接受请求 需要统计所有格子中的数量
* <p>
* 当时间来到 1500 毫秒,落在 (1500/200)%5 也是第二格
* |_____|_____|_____|_____|_____|_____|_____|_____|
* 0 200 400 600 800 1000 1200 1400 1600
* 从500到1500才是我们需要记录的,窗口数组大小是不变的
*
* 500的窗口版本是 500/1000 = 0
* 1500的窗口版本是 1500/1000 = 1
*
* 根据窗口版本来统计 哪些格子我们是要统计的,如果旧窗口版本小于当前窗口版本 不要计数
* (这里的版本 可以理解为没过 1000秒 版本加1,版本不同意味着是一秒前的数据)
*
* @author cuzz
* @version 1.0
**/
public class SlidingWindowRateLimiter implements RateLimiter {
//滑动窗口中的一个元素
private static class WindowElement {
/***
* 版本
*/
private volatile long version;
/**
* 计数
*/
private final AtomicInteger counter;
private WindowElement(long version, AtomicInteger counter) {
this.version = version;
this.counter = counter;
}
private void changeVersion(long newVersion) {
this.version = newVersion;
}
private void reset(int n) {
counter.set(n);
}
void add(int n) {
counter.addAndGet(n);
}
}
/**
* 整个窗口的大小,比如一秒 只能接受100个请求 那么此值设置为1000(毫秒)
*/
private final long windowTimeMillions = 1000;
/***
* 窗口的长度,窗口的长度,窗口越长,越能防止临界问题
*/
private final int windowLength;
/***
* 窗口数组
*/
private final AtomicReferenceArray<WindowElement> slidWindow;
/***
* 一秒接受 100个请求 那么此值设置为 100
*/
private final int canAcceptRequestTimes;
/**
* 记录 窗口每一个元素 对应的时间跨度
* 1秒接受100个请求 那么此处为 1000(毫秒)/100 = 10毫秒
*/
private final int millionsEachOne;
/**
* @param windowLength 指定窗口数量
* @param canAcceptRequestTimes 在 1s 内可以接受多少个请求
*/
public SlidingWindowRateLimiter(int windowLength,
int canAcceptRequestTimes) {
this.windowLength = windowLength;
this.canAcceptRequestTimes = canAcceptRequestTimes;
slidWindow = new AtomicReferenceArray<>(new WindowElement[windowLength]);
millionsEachOne = (int) (windowTimeMillions / windowLength);
}
@Override
public boolean acquire(int n) {
//1s分为5格 那么 一格200ms
//当前时间为 500毫秒 那么落在 (500/200)%5 也就是第二格
long currentTimeMillis = System.currentTimeMillis();
//这次请求 落在 哪个桶
int index = (int) ((currentTimeMillis / millionsEachOne) % windowLength);
//当前这次请求的 version 即当前是多少秒
long version = (currentTimeMillis - currentTimeMillis % windowTimeMillions);
//1. 拿到当前当前的计数
//1.1 如果计数为空 说明从来没有其他请求设置元素,这时,我们需要cas初始化结束计数
//1.2 如果计数不为空
// 1.2.1 是相同的版本 那么自增计数
// 1.2.3 如果不是相同的版本(之前版本小于当前版本),那么更新版本
// 1.2.4 如果不是相同的版本(之前版本大于当前版本),基本上不可能,因为时间是不会倒流的
//操作这次请求落下的桶
WindowElement currentIndex = slidWindow.accumulateAndGet(index,
new WindowElement(version, new AtomicInteger(n)), (old, now) -> {
//计数为空 说明从来没有其他请求设置元素,这时,我们需要cas初始化结束计数
if (old == null) {
return now;
}
//当前请求的次数
int currentRequest = now.counter.get();
//是同一秒 那么自增
if (old.version == now.version) {
old.add(now.counter.get());
} else {
//如果不是相同的版本(之前版本小于当前版本),那么更新版本 更新技术
old.reset(currentRequest);
old.changeVersion(now.version);
}
return old;
});
//大于最大数量返回false 这一瞬间对应的元素 就已经超出了我们的预期 那么返回false
if (currentIndex.counter.get() > canAcceptRequestTimes) {
return false;
}
//统计窗口内所有请求数
long sum = 0;
//下面这一段 不具备瞬时一致性
for (int i = 0; i < windowLength; i++) {
WindowElement e = slidWindow.get(i);
if (e != null && e.version == version) {
sum += e.counter.get();
if (sum > canAcceptRequestTimes) {
return false;
}
}
}
//小于等于才可以
return sum <= canAcceptRequestTimes;
}
}
感觉滑动窗口,不使用锁,是比较难实现的,因为上面的增加次数 和下面的 统计总数,不具备原子性.
漏桶限流算法的核心就是, 不管上面的水流速度有多块, 漏桶水滴的流出 速度始终保持不变 .
这里的水流就是我们的请求,漏水的速度始终不变,是指我们业务线程处理的速度不变,每隔一段时间从任务队列中拿一个请求进行处理 。
漏桶算法,我觉得可以用于网关层,每次请求来了放在阻塞队列,然后网关线程,每隔一段线程拿出一个请求去转发执行,但是转发请求,拿到返回进行响应的时间是不固定,所以网关线程需要使用其他的线程去异步处理,网关线程只负责定时拿请求分配给其他线程异步处理。(本题目中接口要求立马返回false 或者true,不太契合就没写了) 。
大体的思路就是请求来了塞到任务队列,定时线程每隔一段时间取一个请求,交给另外的线程异步处理。如果请求太多,那么阻塞队列塞不进去,直接返回false.
令牌桶算法:请求执行作为消费者,每个请求都需要去桶中拿取一个令牌,取到令牌则继续执行;如果桶中无令牌可取,就触发拒绝策略,可以是超时等待,也可以是直接拒绝本次请求,由此达到限流目的。当桶中令牌数大于最大数量的时候,将不再添加。它可以适应流量突发,N 个请求到来只需要从桶中获取 N 个令牌就可以继续处理.
Guava中的RateLimiter 使用此算法,且提供了预热模式,推荐使用
我们可以使用一个定时任务每隔一段时间想桶中生成令牌,记录令牌的数量使用原子类.
这样实现非常简单,但是每一个限流器需要一个线程去生成,如果我们存在100个接口单独限流,那么需要100个线程 。
我们需要记录上一次请求的时间,和桶中剩余的令牌数,并且桶中的数量最好为double类型,因为此次请求和上一次请求的间隔时间,生成的令牌数可以为小数。所以我实现一个Helper内部类,实现这两个值的原子更新 。
static class Helper {
//同时记录上一次请求时间 和 剩余数量
private static class Pair {
public Pair(long time, double count) {
this.time = time;
this.count = count;
}
final long time;
final double count;
}
private double count() {
return pair.count;
}
private long time() {
return pair.time;
}
//同时记录上一次请求时间 和 剩余数量
private volatile Pair pair;
//反射获取unsafe进行cas操作
private static final Unsafe UNSAFE = getUnsafe();
Helper(double count) {
pair = new Pair(-1, count);
}
//pair 字段的偏移,cas需要当期更改对象的地址
private final static long OFFSET_OF_PAIR;
static {
try {
OFFSET_OF_PAIR = UNSAFE.objectFieldOffset(Helper.class.getDeclaredField("pair"));
} catch (NoSuchFieldException e) {
throw new RuntimeException(e);
}
}
//cas修改,一次是,上一次的时间 和上一次剩余数量,和当前时间,当前数量
boolean cas(long oldTime, double oldCount, long newTime, double newCount) {
final Pair current = pair;
return oldTime == current.time &&
//小于0.00001视为 数量相同,这里需要根据并发度进行设定
Math.abs(oldCount - current.count) < 0.00001 &&
casPair(current, new Pair(newTime, newCount));
}
//cas修改 调用unsafe 实现
boolean casPair(Pair old, Pair newPair) {
return UNSAFE.compareAndSwapObject(this, OFFSET_OF_PAIR, old, newPair);
}
private static Unsafe getUnsafe() {
try {
Constructor<Unsafe> constructor = Unsafe.class.getDeclaredConstructor();
constructor.setAccessible(true);
return constructor.newInstance();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
public class TokenRateLimiter3 implements RateLimiter {
//一秒可以接受多少请求
private final int tokenPerSeconds;
//记录token数量和上次请求时间
private final Helper tokenCount;
public TokenRateLimiter3(int tokenPerSeconds) {
this.tokenPerSeconds = tokenPerSeconds;
tokenCount = new Helper(0);
}
@Override
public boolean acquire(int n) {
if (n > tokenPerSeconds) {
return false;
}
//当前请求时间
long currentTimeMillis = System.currentTimeMillis();
while (true) {
//当前token 有多少个
double token = tokenCount.count();
//上一期请求时间
long preRequestTime = tokenCount.time();
//这段时间可以生成多少令牌
double canGenerate = (((double) (currentTimeMillis - preRequestTime) / 1000.0)
* tokenPerSeconds);
//桶中可以存储的令牌的数量,最大不过 tokenPerSeconds
double canStore = Math.min(token + canGenerate, tokenPerSeconds);
//小于请求的令牌数
if (canStore < (double) n) {
return false;
}
//剩余多少令牌
double release = canStore - n;
//cas修改
if (tokenCount.cas(preRequestTime,
token, currentTimeMillis, release)) {
return true;
}
}
}
}
最后此篇关于限流器算法实现(JUC原子类使用实践)的文章就讲到这里了,如果你想了解更多关于限流器算法实现(JUC原子类使用实践)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
本文分享自华为云社区《大模型LLM之分布式训练》,作者: 码上开花_Lancer。 随着语言模型参数量和所需训练数据量的急速增长,单个机器上有限的资源已无法满足大语言模型训练的要求。需要设计分布式训
本文分享自华为云社区《五大基础算法--动态规划法》,作者: 大金(内蒙的)。 一、基本概念 动态规划法,和分治法极其相似。区别就是,在求解子问题时,会保存该子问题的解,后面的子问题求解时,可以直接拿来
pip install scp pip install pexpect 测试代码: import os import stat import paramiko # 用于调用scp命令 def s
我目前正在实现“ token ”REST 服务。 token 只是一个字符串,由一些参数构建而成,然后经过哈希处理并在一定时间后过期。 我想在我的 REST 服务中有一个可以验证 token 的端点,
打开软删除后,我在客户端上添加一条记录,推送,删除添加的记录推送,然后尝试使用与初始记录相同的主键添加新记录(然后推送),我得到一个异常(exception)。 EntityDomainManager
打开软删除后,我在客户端上添加一条记录,推送,删除添加的记录推送,然后尝试使用与初始记录相同的主键添加新记录(然后推送),我得到一个异常(exception)。 EntityDomainManager
我有一个应用程序,每 x 秒接收一次天气信息。我想将此数据保存到 XML 文件中。 我应该为每个天气通知创建一个新的 XML 文件,还是将每个通知附加到同一个 XML 文件中?我不确定 XML 标准的
我猜我们大多数人都必须在某个时候处理这个问题,所以我想我会问这个问题。 当您的 BLL 中有很多集合并且您发现自己一遍又一遍地编写相同的旧内联(匿名)谓词时,显然有必要进行封装,但实现封装的最佳方
我有一些 c# 代码已经运行了一段时间了..我不得不说,虽然我了解 OO 原则的基础知识,但显然有不止一种方法可以给猫剥皮(尽管我讨厌那个短语!)。 因此,我有一个基本抽象类作为基本数据服务类,如下所
我设计了一个 SQL 数据库系统(使用 Postgre),我有一个问题,即创建一个关系/引用的常见做法是什么,这种关系/引用即使在引用的对象被删除时也能持续存在。 比如有一个UserORM,还有Act
我们的目标是搜索用户输入的字符串并计算在其中找到多少元音。不幸的是我被困在这里,有什么帮助吗? def numVowels(s): vowels= "AEIOUaeiou" if s
我有一个适用于我的“items”int 数组的旋转函数。下面的代码完成了它,除了我不必要地传输值。我正在努力实现“就地”轮换。我的意思是 ptrs 会递增或递减,而不是从数组中获取值。我需要通过这种方
我有一个 json 存储在我的应用程序文档文件夹中,我需要在我的所有 View 中使用它。我正在加载 json 并将其添加到每个 View 中的 NSMutableArray。但现在我了解到,我可以将
我用 C++ 开始了一个项目。这种语言的内存管理对我来说是新的。 我过去常常使用 new () 创建对象,然后传递指针,虽然它可以工作,但调试起来很痛苦,人们看到代码时会用有趣的眼神看着我。我为它没有
已结束。 这个问题是 off-topic .它目前不接受答案。 想要改进这个问题? Update the question所以它是on-topic堆栈溢出。 关闭 10 年前。 Improve thi
保持类松散耦合是编写易于理解、修改和调试的代码的一个重要方面——我明白这一点。然而,作为一个新手,几乎任何时候我都会超越我所苦苦挣扎的最简单的例子。 我或多或少地了解如何将字符串、整数和简单数据类型封
我发现我需要编写大量重复代码,因为我无法从其他 Controller 调用函数。例如,这里新闻提要内容在我的代码中重复,我对一个 Controller 做一些特定的事情,然后需要像这样加载我的新闻提要
假设需要一种数字数据类型,其允许值在指定范围内。更具体地说,假设要定义一个整数类型,其最小值为0,最大值为5000。这种情况在很多情况下都会出现,例如在对数据库数据类型,XSD数据类型进行建模时。 在
假设我想循环整个数组来访问每个元素。使用 for 循环、for...in 循环或 for...of 循环是 JavaScript 开发人员的标准做法吗? 例如: var myArray = ["app
我有一个旧的 SL4/ria 应用程序,我希望用 Breeze 取代它。我有一个关于内存使用和缓存的问题。我的应用程序加载工作列表(一个典型的用户可以访问大约 1,000 个这些工作)。此外,还有很多
我是一名优秀的程序员,十分优秀!