- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
为什么要使用全局唯一ID:
当用户抢购时,就会生成订单并保存到订单表中,而订单表如果使用数据库自增ID就 存在一些问题:
场景分析一: 如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适.
场景分析二: 随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性.
场景分析三: 如果全部使用数据库自增长ID,那么多张表都会出现相同的ID,不满足业务需求.
在分布式系统下全局唯一ID需要满足的特点:
为了提高数据库性能,这里采用Java中的数值类型(Long--8(Byte)字节,64位).
我们的生成策略是基于redis的自增长,及序列号部分,在实现的时候需要传入不同的前缀(即不同业务不同序列号) 。
我们开始实现时间戳位数,先设置一个基准值,即某一时间的秒数,使用的时候用当前时间秒数-基准时间=所得秒数即时间戳; 。
基准值计算:这里我是用 2023/1/1 0:0:0 ;秒数为: 1672531200 。
public static void main(String[] args) {
LocalDateTime time = LocalDateTime.of(2023, 1, 1, 0, 0, 0);
//设置时区
long l = time.toEpochSecond(ZoneOffset.UTC);
System.out.println(l);
}
开始生成时间戳:获得当前时间的秒数-基准值(BEGIN_TIMESTAMP= 1672531200 ) 。
LocalDateTime dateTime = LocalDateTime.now();
//秒数设置时区
long nowSecond = dateTime.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
然后生成序列号,采用Redis的自增操作实现。keyPrefix业务Key(传入的) 。
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix);
这一行代码的使用问题是,同一个业务使用的同一个key,但是redis的自增上上限为2^64,总有时候会超过32位,所以最好是让其同一业务也要有不同的key值,这里我们可以加上当前时间.
//获取当日日期,精确到天
String date = dateTime.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
//自增长上限2^64
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
这样做的好处是:
最后将时间戳和序列号进行拼接即可,位运算。 COUNT_BITS =32 。
timestamp << COUNT_BITS | count;
首先将时间戳左移32位,低处补零,然后进行或运算(遇1得1),这样实现整个的全局唯一ID.
在同一个业务中使用全局唯一ID生成.
/**
* 测试全局唯一ID生成器
* @throws InterruptedException
*/
@Test
public void testIdWorker() throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(300);
ExecutorService executorService = Executors.newFixedThreadPool(300);
Runnable task = ()->{
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id:"+id);
}
//计数-1
countDownLatch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
executorService.submit(task);
}
//等待子线程结束
countDownLatch.await();
long endTime = System.currentTimeMillis();
System.out.println("time= "+(endTime-begin));
}
time= 2608ms=2.68s,生成数量:30000 。
取两个相近的十进制转为二进制对比:
id : 148285184708444304 。
0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0000 。
id : 148285184708444305 。
0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0001 。
仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一 。
import java.util.Calendar;
import java.util.Random;
/**
* @author xbhog
* @describe:短码生成策略,仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一
* @date 2022/9/18
*/
@Slf4j
@Component
public class ShortCode implements IIdGenerator {
@Override
public synchronized long nextId() {
Calendar calendar = Calendar.getInstance();
int year = calendar.get(Calendar.YEAR);
int week = calendar.get(Calendar.WEEK_OF_YEAR);
int day = calendar.get(Calendar.DAY_OF_WEEK);
int hour = calendar.get(Calendar.HOUR_OF_DAY);
log.info("年:{},周:{},日:{},小时:{}",year, week,day,hour);
//打乱顺序:2020年为准 + 小时 + 周期 + 日 + 三位随机数
StringBuilder idStr = new StringBuilder();
idStr.append(year-2020);
idStr.append(hour);
idStr.append(String.format("%02d",week));
idStr.append(day);
idStr.append(String.format("%03d",new Random().nextInt(1000)));
log.info("查看拼接之后的值:{}",idStr);
return Long.parseLong(idStr.toString());
}
public static void main(String[] args) {
long l = new ShortCode().nextId();
System.out.println(l);
}
}
日志记录:
14:40:22.336 [main] INFO ShortCode - 年:2023,周:5,日:7,小时:14
14:40:22.341 [main] INFO ShortCode - 查看拼接之后的值:314057012
314057012
完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。
秒杀条件分析:
业务流程图:
开发流程:
优惠卷订单服务处理流程 。
查询优惠卷 。
判断用户是否在秒杀时间段内 。
判断是否库存充足 。
创建优惠卷订单 。
落库 。
返回订单ID 。
流程比较简单,这里需要注意的点是在 库存扣减这部分 。
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
// 2.判断秒杀是否开始
// 3.判断秒杀是否已经结束
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库
//update tb_seckill_voucher set stock=stock -1 where voucher_id = #{voucherId}
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
// 6.1.全局唯一ID生成:订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
jmeter进行测试:
条件:线程200,循环一次,查看汇总报告可以看出:
预期结果应该为异常是50%,但是这里显示为0%,查看数据库可以看出生成订单200个,库存为-100; 。
原因分析:
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,由此就会出现 库存的超卖问题 .
完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。
解决方式 。
采用乐观锁解决超卖问题:
在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功.
修改上述代码有两种修改方式:
测试第一种方式:100线程并发;数据库订单数为1,库存99( 预期时库存0 ).
通过测试发现会有99%失败的情况,跟我们预计的0%失败率来说相差很远, 失败的原因在于 :在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败.
解决方式就是修改库存数条件为stock>0 。
完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。
上述秒杀订单有一个问题,一个用户可以秒杀多次;优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单.
相关流程图如下:
在原来的代码上增加用户判断:
// 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
存在问题: 现在的问题还是和之前一样, 并发过来,查询数据库,都不存在订单 ,所以我们还是需要加锁,但是 乐观锁比较适合更新数据 ,而现在是 插入数据 ,所以我们需要使用 悲观锁 操作 。
当前注意点:
处理线程安全问题,将对数据库更新和插入的操作单独作为一个方法进行封装:
@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
当前操作虽然可以解决线程安全,但是效率太低 ,每个进来的线程都要锁一下,这里我们可以尝试以用户ID来作为锁条件,但是使用 userId.toString(),是重新new了一个对象,这就造成每个线程进来都不一样,锁不住.
public static String toString(long i) {
if (i == Long.MIN_VALUE)
return "-9223372036854775808";
int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
char[] buf = new char[size];
getChars(i, size, buf);
return new String(buf, true);
}
这里我们使用 userId.toString().intern() 从常量池中查找数据。解决锁对象不一致的问题.
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
.......
}
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
log.info("开始进行用户秒杀活动:{}",userId);
//一人一单逻辑
Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if(count > 0){
return Result.fail("该用户已参加活动。");
}
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if(!success){
return Result.fail("库存不足,正在补充!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
voucherOrder.setVoucherId(voucherId);
voucherOrderService.save(voucherOrder);
return Result.ok(orderId);
}
//这里事务还没有提交事务,但是锁已经释放了。
}
但是! 以上代码还是存在问题; 。
问题的原因在于 当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题. 。
解决: 把用户ID放入外部.将当前方法整体包裹起来,确保事务不会出现问题 。
@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Resource
private ISeckillVoucherService seckillVoucherService;
@Resource
private SeckillVoucherMapper seckillVoucherMapper;
@Resource
private IVoucherOrderService voucherOrderService;
@Resource
private RedisIdWorker redisIdWorker;
@Override
public Result seckillVoucher(Long voucherId) {
//查询优惠卷库存信息
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
log.info("查询秒杀优惠卷:{}",voucher);
//判断秒杀是否开始:开始时间,结束时间
if(voucher.getBeginTime().isAfter(LocalDateTime.now())){
return Result.fail("活动暂未开始,敬请期待!");
}
if(voucher.getEndTime().isBefore(LocalDateTime.now())){
return Result.fail("活动已结束,请关注下次活动!");
}
//判断库存是否充足
if(voucher.getStock() < 1){
return Result.fail("库存不足,正在补充!");
}
Long userId = UserHolder.getUser().getId();
//这一步有问题
synchronized (userId.toString().intern()){
return this.createVoucherOrder(voucherId);
}
}
@Override
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
log.info("开始进行用户秒杀活动:{}",userId);
//一人一单逻辑
Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if(count > 0){
return Result.fail("该用户已参加活动。");
}
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if(!success){
return Result.fail("库存不足,正在补充!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
voucherOrder.setVoucherId(voucherId);
voucherOrderService.save(voucherOrder);
return Result.ok(orderId);
}
}
但是但是!还是有问题.
因为我们调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务.
代理使用需要进行配置和包的引入:
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
</dependency>
在启动类中加入: @EnableAspectJAutoProxy(exposeProxy = true) ; 暴露代理对象,不设置无法获取代理对象,
在调用时,通过AopContext来获取当前代理对象.
synchronized (userId.toString().intern()){
//获取原始事务代理对象
IVoucherOrderService iVoucherOrderService = (IVoucherOrderService) AopContext.currentProxy();
return iVoucherOrderService.createVoucherOrder(voucherId);
}
Jmeter测试条件:100线程,循环1次,查看结果树和汇总报告可以看出,
查看数据库,一个用户秒杀成功一个订单,对比异常率,满足我们的需求.
最后此篇关于【Redis场景4】单机环境下秒杀问题的文章就讲到这里了,如果你想了解更多关于【Redis场景4】单机环境下秒杀问题的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我有一个关于 Redis Pubsub 的练习,如下所示: 如果发布者发布消息但订阅者没有收到服务器崩溃。订阅者如何在重启服务器时收到该消息? 请帮帮我,谢谢! 最佳答案 在这种情况下,消息将永远消失
我们正在使用 Service Stack 的 RedisClient 的 BlockingDequeue 来保存一些数据,直到它可以被处理。调用代码看起来像 using (var client =
我有一个 Redis 服务器和多个 Redis 客户端。每个 Redis 客户端都是一个 WebSocket+HTTP 服务器,其中包括管理 WebSocket 连接。这些 WebSocket+HTT
我有多个 Redis 实例。我使用不同的端口创建了一个集群。现在我想将数据从预先存在的 redis 实例传输到集群。我知道如何将数据从一个实例传输到集群,但是当实例多于一个时,我无法做到这一点。 最佳
配置:三个redis集群分区,跨三组一主一从。当 Master 宕机时,Lettuce 会立即检测到中断并开始重试。但是,Lettuce 没有检测到关联的 slave 已经将自己提升为 master
我想根据从指定集合中检索这些键来删除 Redis 键(及其数据集),例如: HMSET id:1 password 123 category milk HMSET id:2 password 456
我正在编写一个机器人(其中包含要禁用的命令列表),用于监视 Redis。它通过执行禁用命令,例如 (rename-command ZADD "")当我重新启动我的机器人时,如果要禁用的命令列表发生变化
我的任务是为大量听众使用发布/订阅。这是来自 docs 的订阅的简化示例: r = redis.StrictRedis(...) p = r.pubsub() p.subscribe('my-firs
我一直在阅读有关使用 Redis 哨兵进行故障转移的内容。我打算有1个master+1个slave,如果master宕机超过1分钟,就把slave变成master。我知道这在 Sentinel 中是
与仅使用常规 Redis 和创建分片相比,使用 Redis 集群有哪些优势? 在我看来,Redis Cluster 更注重数据安全(让主从架构解决故障)。 最佳答案 我认为当您需要在不丢失任何数据的情
由于 Redis 以被动和主动方式使 key 过期, 有没有办法得到一个 key ,即使它的过期时间已过 (但 在 Redis 中仍然存在 )? 最佳答案 DEBUG OBJECT myKey 将返回
我想用redis lua来实现monitor命令,而不是redis-cli monitor。但我不知道怎么办。 redis.call('monitor') 不起作用。 最佳答案 您不能从 Redis
我读过 https://github.com/redisson/redisson 我发现有几个 Redis 复制设置(包括对 AWS ElastiCache 和 Azure Redis 缓存的支持)
Microsoft.AspNet.SignalR.Redis 和 StackExchange.Redis.Extensions.Core 在同一个项目中使用。前者需要StackExchange.Red
1. 认识 Redis Redis(Remote Dictionary Server)远程词典服务器,是一个基于内存的键值对型 NoSQL 数据库。 特征: 键值(key-value)型,value
1. Redis 数据结构介绍 Redis 是一个 key-value 的数据库,key 一般是 String 类型,但 value 类型多种多样,下面就举了几个例子: value 类型 示例 Str
1. 什么是缓存 缓存(Cache) 就是数据交换的缓冲区,是存贮数据的临时地方,一般读写性能较高。 缓存的作用: 降低后端负载 提高读写效率,降低响应时间 缓存的成本: 数据一致性成本 代码维护成本
我有一份记录 list 。对于我的每条记录,我都需要进行一些繁重的计算,因为我要在Redis中创建反向索引。为了达到到达记录,需要在管道中执行多个redis命令(sadd为100 s + set为1
我有一个三节点Redis和3节点哨兵,一切正常,所有主服务器和从属服务器都经过验证,并且哨兵配置文件已与所有Redis和哨兵节点一起更新,但是问题是当Redis主服务器关闭并且哨兵希望选举失败者时再次
我正在尝试计算Redis中存储的消息之间的响应时间。但是我不知道该怎么做。 首先,我必须像这样存储chat_messages的时间流 ZADD conversation:CONVERSATION_ID
我是一名优秀的程序员,十分优秀!