gpt4 book ai didi

【Redis场景4】单机环境下秒杀问题

转载 作者:我是一只小鸟 更新时间:2023-02-07 22:31:19 26 4
gpt4 key购买 nike

单机环境下的秒杀问题

全局唯一ID

为什么要使用全局唯一ID:

当用户抢购时,就会生成订单并保存到订单表中,而订单表如果使用数据库自增ID就 存在一些问题:

  • 受单表数据量的限制
  • id的规律性太明显

场景分析一: 如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适.

场景分析二: 随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性.

场景分析三: 如果全部使用数据库自增长ID,那么多张表都会出现相同的ID,不满足业务需求.

在分布式系统下全局唯一ID需要满足的特点:

  1. 唯一性
  2. 递增性
  3. 安全性
  4. 高可用(服务稳定)
  5. 高性能(生成速度够快)

为了提高数据库性能,这里采用Java中的数值类型(Long--8(Byte)字节,64位).

  • ID的组成部分:符号位:1bit,永远为0
  • 时间戳:31bit,以秒为单位,可以使用69年
  • 序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID

img

类雪花算法开发

我们的生成策略是基于redis的自增长,及序列号部分,在实现的时候需要传入不同的前缀(即不同业务不同序列号) 。

我们开始实现时间戳位数,先设置一个基准值,即某一时间的秒数,使用的时候用当前时间秒数-基准时间=所得秒数即时间戳; 。

基准值计算:这里我是用 2023/1/1 0:0:0 ;秒数为: 1672531200 。

                        
                          public static void main(String[] args) {
    LocalDateTime time = LocalDateTime.of(2023, 1, 1, 0, 0, 0);
    //设置时区
    long l = time.toEpochSecond(ZoneOffset.UTC);
    System.out.println(l);
}

                        
                      

开始生成时间戳:获得当前时间的秒数-基准值(BEGIN_TIMESTAMP= 1672531200 ) 。

                        
                          LocalDateTime dateTime = LocalDateTime.now();
//秒数设置时区
long nowSecond = dateTime.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;

                        
                      

然后生成序列号,采用Redis的自增操作实现。keyPrefix业务Key(传入的) 。

                        
                          long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix);

                        
                      

这一行代码的使用问题是,同一个业务使用的同一个key,但是redis的自增上上限为2^64,总有时候会超过32位,所以最好是让其同一业务也要有不同的key值,这里我们可以加上当前时间.

                        
                          //获取当日日期,精确到天
String date = dateTime.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
//自增长上限2^64
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

                        
                      

这样做的好处是:

  1. 在redis中缓存是分层的,方便查看,也方便统计每天、每月的订单量或者其他数据等
  2. 不会超过Redis的自增长的值,安全性提高

img

最后将时间戳和序列号进行拼接即可,位运算。 COUNT_BITS =32 。

                        
                          timestamp << COUNT_BITS | count;

                        
                      

首先将时间戳左移32位,低处补零,然后进行或运算(遇1得1),这样实现整个的全局唯一ID.

测试

在同一个业务中使用全局唯一ID生成.

                        
                          /**
 * 测试全局唯一ID生成器
 * @throws InterruptedException
 */
@Test
public  void testIdWorker() throws InterruptedException {
    CountDownLatch countDownLatch = new CountDownLatch(300);
    ExecutorService executorService = Executors.newFixedThreadPool(300);
    Runnable task = ()->{
        for (int i = 0; i < 100; i++) {
            long id = redisIdWorker.nextId("order");
            System.out.println("id:"+id);
        }
        //计数-1
        countDownLatch.countDown();
    };
    long begin = System.currentTimeMillis();
    for (int i = 0; i < 300; i++) {
        executorService.submit(task);
    }
    //等待子线程结束
    countDownLatch.await();
    long endTime = System.currentTimeMillis();
    System.out.println("time= "+(endTime-begin));
}

                        
                      

time= 2608ms=2.68s,生成数量:30000 。

取两个相近的十进制转为二进制对比:

id : 148285184708444304 。

0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0000 。

id : 148285184708444305 。

0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0001 。

短码生成策略

仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一 。

                        
                          import java.util.Calendar;
import java.util.Random;

/**
 * @author xbhog
 * @describe:短码生成策略,仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一
 * @date 2022/9/18
 */
@Slf4j
@Component
public class ShortCode implements IIdGenerator {
    @Override
    public synchronized long nextId() {
        Calendar calendar = Calendar.getInstance();
        int year = calendar.get(Calendar.YEAR);
        int week = calendar.get(Calendar.WEEK_OF_YEAR);
        int day = calendar.get(Calendar.DAY_OF_WEEK);
        int hour = calendar.get(Calendar.HOUR_OF_DAY);
        log.info("年:{},周:{},日:{},小时:{}",year, week,day,hour);
        //打乱顺序:2020年为准 + 小时 + 周期 + 日 + 三位随机数
        StringBuilder idStr = new StringBuilder();
        idStr.append(year-2020);
        idStr.append(hour);
        idStr.append(String.format("%02d",week));
        idStr.append(day);
        idStr.append(String.format("%03d",new Random().nextInt(1000)));
        log.info("查看拼接之后的值:{}",idStr);
        return Long.parseLong(idStr.toString());
    }

    public static void main(String[] args) {
        long l = new ShortCode().nextId();
        System.out.println(l);
    }
}

                        
                      

日志记录:

                        
                          14:40:22.336 [main] INFO ShortCode - 年:2023,周:5,日:7,小时:14
14:40:22.341 [main] INFO ShortCode - 查看拼接之后的值:314057012
314057012

                        
                      

秒杀下单功能及并发测试

完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。

秒杀条件分析:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  • 库存是否充足,不足则无法下单

业务流程图:

img

开发流程:

优惠卷订单服务处理流程 。

  1. 查询优惠卷 。

  2. 判断用户是否在秒杀时间段内 。

  3. 判断是否库存充足 。

    1. 不足:返回异常信息
    2. 充足:执行步骤4
  4. 创建优惠卷订单 。

  5. 落库 。

  6. 返回订单ID 。

流程比较简单,这里需要注意的点是在 库存扣减这部分 。

                        
                          @Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    // 2.判断秒杀是否开始
    // 3.判断秒杀是否已经结束
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库
	//update tb_seckill_voucher set stock=stock -1  where voucher_id =  #{voucherId}
    boolean success  = seckillVoucherMapper.updateDateByVoucherId(voucherId);
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //6.创建订单
    // 6.1.全局唯一ID生成:订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);
    // 6.2.用户id
    Long userId = UserHolder.getUser().getId();
    voucherOrder.setUserId(userId);
    // 6.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);
}

                        
                      

jmeter进行测试:

条件:线程200,循环一次,查看汇总报告可以看出:

img

预期结果应该为异常是50%,但是这里显示为0%,查看数据库可以看出生成订单200个,库存为-100; 。

img

原因分析:

img

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,由此就会出现 库存的超卖问题 .

锁解决超卖问题

完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。

解决方式 。

  1. 悲观锁:可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
  2. 乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas

采用乐观锁解决超卖问题:

img

在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功.

修改上述代码有两种修改方式:

  1. 只要我 扣减库存时的库存和之前我查询到的库存是一样的 ,就意味着没有人在中间修改过库存,那么此时就是安全的。
  2. 判断条件为库存数stock>0即可(解决问题)

测试第一种方式:100线程并发;数据库订单数为1,库存99( 预期时库存0 ).

img

通过测试发现会有99%失败的情况,跟我们预计的0%失败率来说相差很远, 失败的原因在于 :在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败.

解决方式就是修改库存数条件为stock>0 。

一人一单秒杀并发问题

完整代码GitHub : https://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike 。

上述秒杀订单有一个问题,一个用户可以秒杀多次;优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单.

相关流程图如下:

img

在原来的代码上增加用户判断:

                        
                          // 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
    // 用户已经购买过了
    return Result.fail("用户已经购买过一次!");
}

                        
                      

存在问题: 现在的问题还是和之前一样, 并发过来,查询数据库,都不存在订单 ,所以我们还是需要加锁,但是 乐观锁比较适合更新数据 ,而现在是 插入数据 ,所以我们需要使用 悲观锁 操作 。

当前注意点:

  1. 线程安全实现
  2. 锁的范围(颗粒度)
  3. 事务问题

处理线程安全问题,将对数据库更新和插入的操作单独作为一个方法进行封装:

                        
                          @Transactional
public synchronized Result createVoucherOrder(Long voucherId) {

    Long userId = UserHolder.getUser().getId();
         // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            return Result.fail("用户已经购买过一次!");
        }

        // 6.扣减库存
        //开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
        boolean success  = seckillVoucherMapper.updateDateByVoucherId(voucherId);
        if (!success) {
            // 扣减失败
            return Result.fail("库存不足!");
        }

        // 7.创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 7.1.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 7.2.用户id
        voucherOrder.setUserId(userId);
        // 7.3.代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 7.返回订单id
        return Result.ok(orderId);
}

                        
                      

当前操作虽然可以解决线程安全,但是效率太低 ,每个进来的线程都要锁一下,这里我们可以尝试以用户ID来作为锁条件,但是使用 userId.toString(),是重新new了一个对象,这就造成每个线程进来都不一样,锁不住.

                        
                          public static String toString(long i) {
    if (i == Long.MIN_VALUE)
        return "-9223372036854775808";
    int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
    char[] buf = new char[size];
    getChars(i, size, buf);
    return new String(buf, true);
}

                        
                      

这里我们使用 userId.toString().intern() 从常量池中查找数据。解决锁对象不一致的问题.

                        
                          Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
    .......
}
@Transactional
public Result createVoucherOrder(Long voucherId) {
    Long userId = UserHolder.getUser().getId();
	synchronized(userId.toString().intern()){
        log.info("开始进行用户秒杀活动:{}",userId);
        //一人一单逻辑
        Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
        if(count > 0){
            return Result.fail("该用户已参加活动。");
        }
        //开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
        boolean success  = seckillVoucherMapper.updateDateByVoucherId(voucherId);
        if(!success){
            return Result.fail("库存不足,正在补充!");
        }
        //创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(userId);
        voucherOrder.setVoucherId(voucherId);
        voucherOrderService.save(voucherOrder);
        return Result.ok(orderId);
    }
//这里事务还没有提交事务,但是锁已经释放了。
}

                        
                      

但是! 以上代码还是存在问题; 。

问题的原因在于 当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题. 。

解决: 把用户ID放入外部.将当前方法整体包裹起来,确保事务不会出现问题 。

                        
                          @Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
    @Resource
    private ISeckillVoucherService seckillVoucherService;
    @Resource
    private SeckillVoucherMapper seckillVoucherMapper;
    @Resource
    private IVoucherOrderService voucherOrderService;
    @Resource
    private RedisIdWorker redisIdWorker;


    @Override
    public Result seckillVoucher(Long voucherId) {
        //查询优惠卷库存信息
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        log.info("查询秒杀优惠卷:{}",voucher);
        //判断秒杀是否开始:开始时间,结束时间
        if(voucher.getBeginTime().isAfter(LocalDateTime.now())){
            return Result.fail("活动暂未开始,敬请期待!");
        }
        if(voucher.getEndTime().isBefore(LocalDateTime.now())){
            return Result.fail("活动已结束,请关注下次活动!");
        }
        //判断库存是否充足
        if(voucher.getStock() < 1){
            return Result.fail("库存不足,正在补充!");
        }
        Long userId = UserHolder.getUser().getId();
    	//这一步有问题
        synchronized (userId.toString().intern()){
            return this.createVoucherOrder(voucherId);
        }
    }
    @Override
    @Transactional
    public Result createVoucherOrder(Long voucherId) {
        Long userId = UserHolder.getUser().getId();
        log.info("开始进行用户秒杀活动:{}",userId);
        //一人一单逻辑
        Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
        if(count > 0){
            return Result.fail("该用户已参加活动。");
        }
        //开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
        boolean success  = seckillVoucherMapper.updateDateByVoucherId(voucherId);
        if(!success){
            return Result.fail("库存不足,正在补充!");
        }
        //创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(userId);
        voucherOrder.setVoucherId(voucherId);
        voucherOrderService.save(voucherOrder);
        return Result.ok(orderId);
    }
}

                        
                      

但是但是!还是有问题.

因为我们调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务.

代理使用需要进行配置和包的引入:

                        
                          <dependency>
    <groupId>org.aspectj</groupId>
    <artifactId>aspectjweaver</artifactId>
</dependency>

                        
                      

在启动类中加入: @EnableAspectJAutoProxy(exposeProxy = true) ; 暴露代理对象,不设置无法获取代理对象,

在调用时,通过AopContext来获取当前代理对象.

                        
                          synchronized (userId.toString().intern()){
    //获取原始事务代理对象
    IVoucherOrderService iVoucherOrderService = (IVoucherOrderService) AopContext.currentProxy();
    return iVoucherOrderService.createVoucherOrder(voucherId);
}

                        
                      

Jmeter测试条件:100线程,循环1次,查看结果树和汇总报告可以看出,

img

查看数据库,一个用户秒杀成功一个订单,对比异常率,满足我们的需求.

最后此篇关于【Redis场景4】单机环境下秒杀问题的文章就讲到这里了,如果你想了解更多关于【Redis场景4】单机环境下秒杀问题的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com