- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
本文作者:倪泽,Apache RocketMQ committer、RSQLDB/RocketMQ Streams Maintainer 。
01 背景 。
RocketMQ Streams是一款基于RocketMQ为基础的轻量级流计算引擎,具有资源消耗少、部署简单、功能全面的特点,目前已经在社区开源。RocketMQ Streams在阿里云内部被使用在对资源比较敏感,同时又强烈需要流计算的场景,比如在自建机房的云安全场景下.
自RocketMQ Streams开源以来,吸引了大量用户调研和试用。但是也存在一些问题,在RocketMQ Streams 1.1.0中,主要针对以下问题做出了改进和优化.
1、面向用户API不够友好,不能使用泛型,不支持自定义序列化/反序列化; 。
2、代码冗余,在RocketMQ Streams中存在将流处理拓扑序列化反序列化模块,RocketMQ Streams作为轻量级流处理SDK,构建好流处理节点之后应该可以直接处理数据,不存在将流处理拓扑图本地保存或者网络传输需求.
3、流处理过程不容易理解,含有大量缓存、刷新逻辑; 。
4、存在大量支持SQL的代码,这部分和SDK方式运行流处理任务的逻辑无关; 。
在RocketMQ Streams 1.1.0中,对上述问题做出了改进,期望能带来更好的使用体验。同时,重新设计了流处理拓扑构建过程、去掉冗余代码,使得代码更容易被理解.
从今天起,将推出系列文章介绍RocketMQ Streams 1.1.0版本,本次文章主要介绍RocketMQ Streams 1.1.0的API如何使用,如何利用RocketMQ Streams快速构建流处理应用.
02 典型使用示例 。
本地运行下列示例的步骤:
1、部署RocketMQ 5.0; 。
2、使用mqAdmin创建topic; 。
3、构建示例工程,添加依赖,启动示例。RocketMQ Streams 坐标:
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-streams</artifactId>
<version>1.1.0</version>
</dependency>
4、向topic中写入相应数据,并观察结果.
更详细文档请参考: https://github.com/apache/rocketmq-streams 。
WordCount 。
public class WordCount {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("wordCount");
builder.source("sourceTopic", total -> {
String value = new String(total, StandardCharsets.UTF_8);
return new Pair<>(null, value);
})
.flatMap((ValueMapperAction<String, List<String>>) value -> {
String[] splits = value.toLowerCase().split("\W+");
return Arrays.asList(splits);
})
.keyBy(value -> value)
.count()
.toRStream()
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.put(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
final CountDownLatch latch = new CountDownLatch(1);
Runtime.getRuntime().addShutdownHook(new Thread("wordcount-shutdown-hook") {
@Override
public void run() {
rocketMQStream.stop();
latch.countDown();
}
});
try {
rocketMQStream.start();
latch.await();
} catch (final Throwable e) {
System.exit(1);
}
System.exit(0);
}
}
WordCount示例要点:
1、JobId wordCount唯一标识流处理任务; 。
2、自定义的反序列化; 。
3、一对多转化; 。
4、lambda形式从数据中指定Key; 。
5、支持有状态计算; 。
窗口聚合 。
public class WindowCount {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("windowCountUser");
AggregateAction<String, User, Num> aggregateAction = (key, value, accumulator) -> new Num(value.getName(), 100);
builder.source("user", source -> {
User user1 = JSON.parseObject(source, User.class);
return new Pair<>(null, user1);
})
.selectTimestamp(User::getTimestamp)
.filter(value -> value.getAge() > 0)
.keyBy(value -> "key")
.window(WindowBuilder.tumblingWindow(Time.seconds(15)))
.aggregate(aggregateAction)
.toRStream()
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.putIfAbsent(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
properties.put(Constant.TIME_TYPE, TimeType.EVENT_TIME);
properties.put(Constant.ALLOW_LATENESS_MILLISECOND, 2000);
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
rocketMQStream.start();
}
}
窗口聚合示例要点:
1、支持指定时间字段; 。
2、支持滑动、滚动、会话多种类型window; 。
3、支持自定义UDAF类型聚合; 。
4、支持自定义时间类型和数据最大迟到时间; 。
双流JOIN 。
public class JoinWindow {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("joinWindow");
//左流
RStream<User> user = builder.source("user", total -> {
User user1 = JSON.parseObject(total, User.class);
return new Pair<>(null, user1);
});
//右流
RStream<Num> num = builder.source("num", source -> {
Num user12 = JSON.parseObject(source, Num.class);
return new Pair<>(null, user12);
});
//自定义join后的运算
ValueJoinAction<User, Num, Union> action = new ValueJoinAction<User, Num, Union>() {
@Override
public Union apply(User value1, Num value2) {
...
}
};
user.join(num)
.where(User::getName)
.equalTo(Num::getName)
.window(WindowBuilder.tumblingWindow(Time.seconds(30)))
.apply(action)
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.put(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
rocketMQStream.start();
}
}
双流聚合示例要点:
1、支持window join和非window join,对于非window join,只需要在上述及连表达式中去掉window即可; 。
2、支持多种窗口类型的window join; 。
3、支持对join后数据自定义操作; 。
03 参与贡献 。
RocketMQ Streams是Apache RocketMQ的子项目,已经在社区开源,参与RocketMQ Streams相关工作,请参考以下资源:
1、试用RocketMQ Streams,并阅读相关文档以了解更多信息; 。
maven仓库坐标:
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-streams</artifactId>
<version>1.1.0</version>
</dependency>
RocketMQ Streams文档:
https://rocketmq.apache.org/zh/docs/streams/30RocketMQ Streams Overview 。
2、参与贡献:如果你有任何功能请求或错误报告,请随时提交 Pull Request 来分享你的反馈和想法; 。
社区仓库:
https://github.com/apache/rocketmq-streams 。
3、联系我们:可以在 GitHub上创建 Issue,向 RocketMQ 邮件列表发送电子邮件,或在 RocketMQ Streams SIG 交流群与专家共同探讨,RocketMQ Streams SIG加入方式:添加“小火箭”微信,回复RocketMQ Streams.
邮件列表:
https://lists.apache.org/list.html?dev@rocketmq.apache.org 。
最后此篇关于RocketMQStreams1.1.0:轻量级流处理再出发的文章就讲到这里了,如果你想了解更多关于RocketMQStreams1.1.0:轻量级流处理再出发的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我是一名优秀的程序员,十分优秀!