- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
本文作者:倪泽,Apache RocketMQ committer、RSQLDB/RocketMQ Streams Maintainer 。
01 背景 。
RocketMQ Streams是一款基于RocketMQ为基础的轻量级流计算引擎,具有资源消耗少、部署简单、功能全面的特点,目前已经在社区开源。RocketMQ Streams在阿里云内部被使用在对资源比较敏感,同时又强烈需要流计算的场景,比如在自建机房的云安全场景下.
自RocketMQ Streams开源以来,吸引了大量用户调研和试用。但是也存在一些问题,在RocketMQ Streams 1.1.0中,主要针对以下问题做出了改进和优化.
1、面向用户API不够友好,不能使用泛型,不支持自定义序列化/反序列化; 。
2、代码冗余,在RocketMQ Streams中存在将流处理拓扑序列化反序列化模块,RocketMQ Streams作为轻量级流处理SDK,构建好流处理节点之后应该可以直接处理数据,不存在将流处理拓扑图本地保存或者网络传输需求.
3、流处理过程不容易理解,含有大量缓存、刷新逻辑; 。
4、存在大量支持SQL的代码,这部分和SDK方式运行流处理任务的逻辑无关; 。
在RocketMQ Streams 1.1.0中,对上述问题做出了改进,期望能带来更好的使用体验。同时,重新设计了流处理拓扑构建过程、去掉冗余代码,使得代码更容易被理解.
从今天起,将推出系列文章介绍RocketMQ Streams 1.1.0版本,本次文章主要介绍RocketMQ Streams 1.1.0的API如何使用,如何利用RocketMQ Streams快速构建流处理应用.
02 典型使用示例 。
本地运行下列示例的步骤:
1、部署RocketMQ 5.0; 。
2、使用mqAdmin创建topic; 。
3、构建示例工程,添加依赖,启动示例。RocketMQ Streams 坐标:
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-streams</artifactId>
<version>1.1.0</version>
</dependency>
4、向topic中写入相应数据,并观察结果.
更详细文档请参考: https://github.com/apache/rocketmq-streams 。
WordCount 。
public class WordCount {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("wordCount");
builder.source("sourceTopic", total -> {
String value = new String(total, StandardCharsets.UTF_8);
return new Pair<>(null, value);
})
.flatMap((ValueMapperAction<String, List<String>>) value -> {
String[] splits = value.toLowerCase().split("\W+");
return Arrays.asList(splits);
})
.keyBy(value -> value)
.count()
.toRStream()
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.put(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
final CountDownLatch latch = new CountDownLatch(1);
Runtime.getRuntime().addShutdownHook(new Thread("wordcount-shutdown-hook") {
@Override
public void run() {
rocketMQStream.stop();
latch.countDown();
}
});
try {
rocketMQStream.start();
latch.await();
} catch (final Throwable e) {
System.exit(1);
}
System.exit(0);
}
}
WordCount示例要点:
1、JobId wordCount唯一标识流处理任务; 。
2、自定义的反序列化; 。
3、一对多转化; 。
4、lambda形式从数据中指定Key; 。
5、支持有状态计算; 。
窗口聚合 。
public class WindowCount {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("windowCountUser");
AggregateAction<String, User, Num> aggregateAction = (key, value, accumulator) -> new Num(value.getName(), 100);
builder.source("user", source -> {
User user1 = JSON.parseObject(source, User.class);
return new Pair<>(null, user1);
})
.selectTimestamp(User::getTimestamp)
.filter(value -> value.getAge() > 0)
.keyBy(value -> "key")
.window(WindowBuilder.tumblingWindow(Time.seconds(15)))
.aggregate(aggregateAction)
.toRStream()
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.putIfAbsent(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
properties.put(Constant.TIME_TYPE, TimeType.EVENT_TIME);
properties.put(Constant.ALLOW_LATENESS_MILLISECOND, 2000);
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
rocketMQStream.start();
}
}
窗口聚合示例要点:
1、支持指定时间字段; 。
2、支持滑动、滚动、会话多种类型window; 。
3、支持自定义UDAF类型聚合; 。
4、支持自定义时间类型和数据最大迟到时间; 。
双流JOIN 。
public class JoinWindow {
public static void main(String[] args) {
StreamBuilder builder = new StreamBuilder("joinWindow");
//左流
RStream<User> user = builder.source("user", total -> {
User user1 = JSON.parseObject(total, User.class);
return new Pair<>(null, user1);
});
//右流
RStream<Num> num = builder.source("num", source -> {
Num user12 = JSON.parseObject(source, Num.class);
return new Pair<>(null, user12);
});
//自定义join后的运算
ValueJoinAction<User, Num, Union> action = new ValueJoinAction<User, Num, Union>() {
@Override
public Union apply(User value1, Num value2) {
...
}
};
user.join(num)
.where(User::getName)
.equalTo(Num::getName)
.window(WindowBuilder.tumblingWindow(Time.seconds(30)))
.apply(action)
.print();
TopologyBuilder topologyBuilder = builder.build();
Properties properties = new Properties();
properties.put(MixAll.NAMESRV_ADDR_PROPERTY, "127.0.0.1:9876");
RocketMQStream rocketMQStream = new RocketMQStream(topologyBuilder, properties);
rocketMQStream.start();
}
}
双流聚合示例要点:
1、支持window join和非window join,对于非window join,只需要在上述及连表达式中去掉window即可; 。
2、支持多种窗口类型的window join; 。
3、支持对join后数据自定义操作; 。
03 参与贡献 。
RocketMQ Streams是Apache RocketMQ的子项目,已经在社区开源,参与RocketMQ Streams相关工作,请参考以下资源:
1、试用RocketMQ Streams,并阅读相关文档以了解更多信息; 。
maven仓库坐标:
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-streams</artifactId>
<version>1.1.0</version>
</dependency>
RocketMQ Streams文档:
https://rocketmq.apache.org/zh/docs/streams/30RocketMQ Streams Overview 。
2、参与贡献:如果你有任何功能请求或错误报告,请随时提交 Pull Request 来分享你的反馈和想法; 。
社区仓库:
https://github.com/apache/rocketmq-streams 。
3、联系我们:可以在 GitHub上创建 Issue,向 RocketMQ 邮件列表发送电子邮件,或在 RocketMQ Streams SIG 交流群与专家共同探讨,RocketMQ Streams SIG加入方式:添加“小火箭”微信,回复RocketMQ Streams.
邮件列表:
https://lists.apache.org/list.html?dev@rocketmq.apache.org 。
最后此篇关于RocketMQStreams1.1.0:轻量级流处理再出发的文章就讲到这里了,如果你想了解更多关于RocketMQStreams1.1.0:轻量级流处理再出发的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
这个问题在这里已经有了答案: Why filter() after flatMap() is "not completely" lazy in Java streams? (8 个答案) 关闭 6
我正在创建一个应用程序来从 Instagram 收集数据。我正在寻找像 Twitter 流 API 这样的流 API,这样我就可以自动实时收集数据而无需发送请求。 Instagram 有类似的 API
我正在使用 Apache Commons 在 Google App Engine 中上传一个 .docx 文件,如此链接中所述 File upload servlet .上传时,我还想使用 Apach
我尝试使用 DynamoDB 流和 AWS 提供的 Java DynamoDB 流 Kinesis 适配器捕获 DynamoDB 表更改。我正在 Scala 应用程序中使用 AWS Java 开发工具
我目前有一个采用 H.264 编码的 IP 摄像机流式视频 (RTSP)。 我想使用 FFmpeg 将此 H.264 编码流转换为另一个 RTSP 流,但 MPEG-2 编码。我该怎么做?我应该使用哪
Redis 流是否受益于集群模式?假设您有 10 个流,它们是分布在整个集群中还是都分布在同一节点上?我计划使用 Redis 流来实现真正的高吞吐量(200 万条消息/秒),所以我担心这种规模的 Re
这件事困扰了我一段时间。 所以我有一个 Product 类,它有一个 Image 列表(该列表可能为空)。 我想做 product.getImages().stream().filter(...) 但
是否可以使用 具有持久存储的 Redis 流 还是流仅限于内存数据? 我知道可以将 Redis 与核心数据结构的持久存储一起使用,但我已经能够理解是否也可以使用 Redis 中的流的持久存储。 最佳答
我开始学习 Elixir 并遇到了一个我无法轻松解决的挑战。 我正在尝试创建一个函数,该函数接受一个 Enumerable.t 并返回另一个 Enumerable.t ,其中包含下 n 个项目。它与
我试图从 readLine 调用创建一个无限的字符串流: import java.io.{BufferedReader, InputStreamReader} val in = new Buffere
你能帮我使用 Java 8 流 API 编写以下代码吗? SuperUser superUser = db.getSuperUser; for (final Client client : super
我正在尝试服用补品routeguide tutorial,并将客户端变成rocket服务器。我只是接受响应并将gRPC转换为字符串。 service RouteGuide { rpc GetF
流程代码可以是run here. 使用 flow,我有一个函数,它接受一个键值对对象并获取它的值 - 它获取的值应该是字符串、数字或 bool 值。 type ValueType = string
如果我有一个函数返回一个包含数据库信息的对象或一个空对象,如下所示: getThingFromDB: async function(id:string):Promise{ const from
我正在尝试使用javascript api和FB.ui将ogg音频文件发布到流中, 但是我不知道该怎么做。 这是我给FB.ui的电话: FB.ui( { method: '
我正在尝试删除工作区(或克隆它以使其看起来像父工作区,但我似乎两者都做不到)。但是,当我尝试时,我收到此消息:无法删除工作区 test_workspace,因为它有一个非空的默认组。 据我所知,这意味
可以使用 Stream|Map 来完成此操作,这样我就不需要将结果放入外部 HashMap 中,而是使用 .collect(Collectors.toMap(...)); 收集结果? Map rep
当我们从集合列表中获取 Stream 时,幕后到底发生了什么?我发现很多博客都说Stream不存储任何数据。如果这是真的,请考虑代码片段: List list = new ArrayList(); l
我对流及其工作方式不熟悉,我正在尝试获取列表中添加的特定对象的出现次数。 我找到了一种使用Collections来做到这一点的方法。其过程如下: for (int i = 0; i p.conten
我希望将一个 map 列表转换为另一个分组的 map 列表。 所以我有以下 map 列表 - List [{ "accId":"1", "accName":"TestAcc1", "accNumber
我是一名优秀的程序员,十分优秀!