- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
TensorRT-Alpha 基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10、linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet。 关注仓库《TensorRT-Alpha》: https://github.com/FeiYull/TensorRT-Alpha 。
🚀快速看看yolov8n 在移动端RTX2070m(8G)的新能表现:
model | video resolution | model input size | GPU Memory-Usage | GPU-Util |
---|---|---|---|---|
yolov8n | 1920x1080 | 8x3x640x640 | 1093MiB/7982MiB | 14% |
下图是yolov8n的运行时间开销,单位是ms:
更多TensorRT-Alpha测试录像在B站视频: B站:YOLOv8n B站:YOLOv8s 。
下面是左边是python框架推理结果,右边是TensorRT-Alpha推理结果.
YOLOv4 YOLOv3 YOLOR YOLOX略.
三步解决win环境配置 :
需要Microsoft账号,如果您有别的途径下载安装也可以.
注:Nvidia相关网站需要注册账号.
nvidia-smi
看到如下信息表明驱动正常:
nvcc -V
CMD窗口打印如下信息表示cuda11.2安装正常 。
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
note:cuda11.2 不需要手动设置环境变量,如下图,环境变量都是自动设置的.
一般地,Visual Studio 2019,一个库对应两个属性表文件,分别对应:vs2019的debug模式和release模式,例如:本文中OpenCV创建了这两种。而TensorRT和CUDA只需要创建一种属性表(适用以上两种模式).
创建opencv库debug属性表:
请记住,制作属性表就3个步骤:
右击Debug|x64 or 右击Release|x64新建属性表,重命名为:TensorRT8.4.2.4_X64, 。
# include路径
F:\ThirdParty\TensorRT-8.4.2.4\include
F:\ThirdParty\TensorRT-8.4.2.4\samples\common
F:\ThirdParty\TensorRT-8.4.2.4\samples\common\windows
# lib路径
F:\ThirdParty\TensorRT-8.4.2.4\lib
# lib文件名称(for release& debug)
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
依照上一节3个步骤:
CUDA属性表直接白嫖官方,在路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\CUDA 11.2.props 。
最后,我们应该有了如下属性表文件:
其中,cuda 和tensorrt的属性表同时兼容release x64 和debug x64,你再新建TensorRT-Alpha中yolov8 yolov7 yolov6 等项目后,只需要把上述提前做好的属性表引入到工程就行了,**当然项目还需要进行简单设置**(设置NVCC,避免tensorrt的坑),在后文提到。属性表做到了一次新建,到处使用。
Windows10环境安装YOLOv8,参考我的另一篇《Win10环境下yolov8快速配置与测试》: https://blog.csdn.net/m0_72734364/article/details/128815530 。
直接在网盘下载 weiyun or google driver 或者使用如下命令导出onnx
# 🔥 yolov8 官方仓库: https://github.com/ultralytics/ultralytics
# 🔥 yolov8 官方教程: https://docs.ultralytics.com/quickstart/
# 🚀TensorRT-Alpha will be updated synchronously as soon as possible!
# 安装 yolov8
conda create -n yolov8 python==3.8 -y
conda activate yolov8
pip install ultralytics==8.0.5
pip install onnx
# 下载官方权重(".pt" file)
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x6.pt
导出 onnx
# 640
yolo mode=export model=yolov8n.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8s.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8m.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8l.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8x.pt format=onnx dynamic=True #simplify=True
# 1280
yolo mode=export model=yolov8x6.pt format=onnx dynamic=True #simplify=True
# trtexec.exe在路径:F:\ThirdParty\TensorRT-8.4.2.4\bin
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8n.onnx --saveEngine=yolov8n.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8m.onnx --saveEngine=yolov8m.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8l.onnx --saveEngine=yolov8l.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8x.onnx --saveEngine=yolov8x.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8x6.onnx --saveEngine=yolov8x6.trt --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280
你将会的到例如:yolov8n.trt、yolov8s.trt、yolov8m.trt等文件.
3.3.1 新建、设置项目 下载TensorRT-Alpha仓库:
git clone https://github.com/FeiYull/tensorrt-alpha
3.3.2 编译运行 上面视频在vs2019中设置命令行参数,您也可以在CMD命令行上运行程序,如下:
# 下面参数解释
# --show 表示可视化结果
# --savePath 表示保存,默认保存在build目录
# --savePath=../ 保存在上一级目录
## 640
# 推理图片
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=1 --img=../../data/6406407.jpg --show --savePath
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath
# 推理视频
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath=../
# 在线推理相机视频
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=2 --cam_id=0 --show
## 1280
# infer camera
./app_yolov8.exe --model=../../data/yolov8/yolov8x6.trt --size=1280 --batch_size=2 --cam_id=0 --show
我的B站所有视频都在WIN10环境运行, https://space.bilibili.com/2028719613 。
[video(video-zRQTyZp3-1675415874102)(type-bilibili)(url- https://player.bilibili.com/player.html?aid=778153500 )(image- https://img-blog.csdnimg.cn/img_convert/4faa0b726044d139a1282d3883c6ed08.jpeg )(title-yolov8 tensorrt cuda模型推理加速部署TensorRT-Alpha《ski facility》)] 。
[video(video-Ej2C6hgr-1675415817040)(type-bilibili)(url- https://player.bilibili.com/player.html?aid=650665729 )(image- https://img-blog.csdnimg.cn/img_convert/04c8cb5b7ebe3fd410e4af53548a668f.jpeg )(title-yolov8 tensorrt cuda模型推理加速部署TensorRT-Alpha《NewYork-Stree》)] 。
[video(video-xbOkXTEV-1675415667896)(type-bilibili)(url- https://player.bilibili.com/player.html?aid=565721755 )(image- https://img-blog.csdnimg.cn/img_convert/a4469f9c7a048393d4fee5b7bba2893d.jpeg )(title-yolov7 tensorrt cuda模型推理加速部署TensorRT-Alpha《Korea-Night》)] 。
https://github.com/FeiYull/TensorRT-Alpha 。
一位热心小伙做的,他好努力,前几天经常半夜2点、3点给我留言,太卷了,奋斗精神值得学习.
https://www.bilibili.com/video/BV1SM411i7km/?spm_id_from=333.999.0.0&vd_source=a96c9c3f099f4167807291a34fd50fd5 。
最后此篇关于Win10下yolov8tensorrt模型加速部署【实战】的文章就讲到这里了,如果你想了解更多关于Win10下yolov8tensorrt模型加速部署【实战】的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我想在我的 iPhone 应用程序中加入线性回归。经过一些搜索,我发现 Accelerate Framework 中的 LAPACK 和 BLAS 是正确的库。但是我很难将加速框架添加到我的 XCod
有什么方法可以加速 JS 脚本(我指的是一些复杂的 DOM 操作,比如游戏或动画)? 最佳答案 真的没有办法真正加快速度。您可以压缩它,但不会快很多。 关于Javascript 加速?,我们在Stac
有时,我必须为一个项目重新导入数据,从而将大约 360 万行读入 MySQL 表(目前是 InnoDB,但我实际上并不局限于这个引擎)。 “加载数据文件...”已被证明是最快的解决方案,但它有一个权衡
在尝试计算加速时,我被卡住了。所以给出的问题是: 问题 1 如果程序的 50% 增强了 2 倍,其余 50% 增强了 4 倍,那么由于增强而导致的整体加速是多少? Hints:考虑增强前(未增强)机器
目前我正在处理实时绘图,但可视化非常慢。我想知道你可以做些什么来加速 Matplotlib 中的事情: 后端如何影响性能?是否有后端 实时绘图比其他人更好吗? 我可以降低分辨率以提高 FPS 吗? 如
我有一个小型测试框架。它执行一个循环,执行以下操作: 生成一个小的 Haskell 源文件。 使用 runhaskell 执行此操作.该程序生成各种磁盘文件。 处理刚刚生成的磁盘文件。 这种情况发生了
这是我的网站:Instant-YouTube 如您所见,加载需要很长时间。在 IE8 及以下甚至有时会导致浏览器崩溃。我不确定是什么原因造成的。可能是 Clicksor 广告,但我认为是 swfobj
是否可以加速 SKSpriteNode? 我知道可以使用 node.physicsBody.velocity 轻松设置速度但是设置它的加速度有多难? 最佳答案 从牛顿第二定律倒推运动:F = m.a您
有没有人有加速 FCKEditor 的技术?是否有一些关键的 JavaScript 文件可以缩小或删除? 最佳答案 在最新版本 (3.0.1) 中,FCKEditor 已重命名为 CKEditor .
我有以下 MySQL 查询,需要一天多的时间才能执行: SELECT SN,NUMBER FROM a WHERE SN IN (SELECT LOWER_SN FROM b WHER
我现在正在开发一款使用加速来玩的游戏。我找到了如何让我的元素移动,但不改变它的“原点”,或者更准确地说,改变加速度计算的原点: 事实上,我的图像是移动的,它的中心是这样定义的: imageView.c
我有一个 mysql 表,其中存储有 4 列的成员消息: message_id(主键,自增) sender_id( key ) receiver_id( key ) 消息内容 我做了很多 SELECT
我在 cuda_computation.cu 中有以下代码 #include #include #include #include void checkCUDAError(const char
我正在使用 BeautifulSoup 在 for 循环中解析数千个网站。这是我的代码片段: def parse_decision(link): t1 = time.time() de
我正在使用 OpenCV 2.4 (C++) 在灰度图像上进行寻线。这涉及一些基本的图像处理步骤,如模糊、阈值、Canny 边缘检测器、梯度滤波器或霍夫变换。我必须在数千张图像上应用寻线算法。 考虑到
当我试图连续生成四次相同的报告时,我刚刚分析了我的报告应用程序。第一个用了 1859 毫秒,而后面的只用了 400 到 600 毫秒。对此的解释是什么?我能以某种方式使用它来使我的应用程序更快吗?报告
当我打开 Storyboard文件时,由于其中包含的 VC 数量,打开它需要 1-2 分钟。加快速度的最佳做法是什么?我们应该将一些 VC 移动到不同的 Storyboard文件中吗?我们是否应该使用
我有一个包含多个页面的 UIPageViewController。每个页面都是相同的 View Controller ,但会跟踪页码并显示 PDF 的正确页面。问题是每个 PDF 页面都需要在 cur
这实际上是两个问题,但它们非常相似,为了简单起见,我想将它们放在一起: 首先:给定一个已建立的 Java 项目,除了简单的代码内优化之外,还有哪些不错的方法可以加快它的速度? 其次:在用Java从头写
我有一个包含 1000 个条目的文档,其格式类似于:
我是一名优秀的程序员,十分优秀!