gpt4 book ai didi

yolov8tensorrt模型加速部署【实战】

转载 作者:我是一只小鸟 更新时间:2023-01-25 06:31:24 26 4
gpt4 key购买 nike

yolov8 tensorrt模型加速部署【实战】

TensorRT-Alpha 基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10、linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet。 Windows10教程正在制作,可以关注仓库: https://github.com/FeiYull/TensorRT-Alpha 。

1、加速结果展示

1.1 性能速览

🚀快速看看yolov8n 在移动端RTX2070m(8G)的新能表现:

model video resolution model input size GPU Memory-Usage GPU-Util
yolov8n 1920x1080 8x3x640x640 1093MiB/7982MiB 14%

下图是yolov8n的运行时间开销,单位是ms:

更多TensorRT-Alpha测试录像在B站视频: B站:YOLOv8n B站:YOLOv8s 。

在这里插入图片描述

1.2精度对齐

下面是左边是python框架推理结果,右边是TensorRT-Alpha推理结果.

yolov8n : Offical( left ) vs Ours( right )

在这里插入图片描述

yolov7-tiny : Offical( left ) vs Ours( right )

在这里插入图片描述

yolov6s : Offical( left ) vs Ours( right )

在这里插入图片描述

yolov5s : Offical( left ) vs Ours( right )

YOLOv4 YOLOv3 YOLOR YOLOX略.

2、Ubuntu18.04环境配置

如果您对tensorrt不是很熟悉,请务必保持下面库版本一致.

2.1 安装工具链和opencv

                        
                          sudo apt-get update 
sudo apt-get install build-essential 
sudo apt-get install git
sudo apt-get install gdb
sudo apt-get install cmake

                        
                      
                        
                          sudo apt-get install libopencv-dev  
# pkg-config --modversion opencv

                        
                      

2. 安装Nvidia相关库

注:Nvidia相关网站需要注册账号.

2.1 安装Nvidia显卡驱动

                        
                          ubuntu-drivers devices
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470-server # for ubuntu18.04
nvidia-smi

                        
                      

2.2 安装 cuda11.3

  • 进入链接: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择:CUDA Toolkit 11.3.0(April 2021)
  • 选择:[Linux] -> [x86_64] -> [Ubuntu] -> [18.04] -> [runfile(local)]

    在网页你能看到下面安装命令,我这里已经拷贝下来:
                        
                          wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run

                        
                      

cuda的安装过程中,需要你在bash窗口手动作一些选择,这里选择如下:

  • select:[continue] -> [accept] -> 接着按下回车键取消Driver和465.19.01这个选项,如下图( it is important! ) -> [Install]

    在这里插入图片描述
    bash窗口提示如下表示安装完成
                        
                          #===========
#= Summary =
#===========

#Driver:   Not Selected
#Toolkit:  Installed in /usr/local/cuda-11.3/
#......

                        
                      

把cuda添加到环境变量:

                        
                          vim ~/.bashrc

                        
                      

把下面拷贝到 .bashrc里面 。

                        
                          # cuda v11.3
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3

                        
                      

刷新环境变量和验证 。

                        
                          source ~/.bashrc
nvcc -V

                        
                      

bash窗口打印如下信息表示cuda11.3安装正常 。

                        
                          nvcc: NVIDIA (R) Cuda compiler driver<br>
Copyright (c) 2005-2021 NVIDIA Corporation<br>
Built on Sun_Mar_21_19:15:46_PDT_2021<br>
Cuda compilation tools, release 11.3, V11.3.58<br>
Build cuda_11.3.r11.3/compiler.29745058_0<br>

                        
                      

2.3 安装 cudnn8.2

  • 进入网站: https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.0 (April 23rd, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Linux (x86_64)
  • 你将会下载这个压缩包: "cudnn-11.3-linux-x64-v8.2.0.53.tgz"
                        
                          # 解压
tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz

                        
                      

将cudnn的头文件和lib拷贝到cuda11.3的安装目录下:

                        
                          sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

                        
                      

2.4 下载 tensorrt8.4.2.4

本教程中,tensorrt只需要下载\、解压即可,不需要安装.

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 TAR Package
  • 你将会下载这个压缩包: "TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz"
                        
                          # 解压
tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
# 快速验证一下tensorrt+cuda+cudnn是否安装正常
cd TensorRT-8.4.2.4/samples/sampleMNIST
make
cd ../../bin/

                        
                      

导出tensorrt环境变量( it is important! ),注:将LD_LIBRARY_PATH:后面的路径换成你自己的!后续编译onnx模型的时候也需要执行下面第一行命令 。

                        
                          export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/temp/TensorRT-8.4.2.4/lib
./sample_mnist

                        
                      

bash窗口打印类似如下图的手写数字识别表明cuda+cudnn+tensorrt安装正常 。

3、YOLOv8模型部署

3.1 下载仓库TensorRT-Alpha

                        
                          git clone https://github.com/FeiYull/tensorrt-alpha

                        
                      

3.2 获取onnx文件

直接在网盘下载 weiyun or google driver 或者使用如下命令导出onnx

                        
                          # 🔥 yolov8 官方仓库: https://github.com/ultralytics/ultralytics
# 🔥 yolov8 官方教程: https://docs.ultralytics.com/quickstart/
# 🚀TensorRT-Alpha will be updated synchronously as soon as possible!

# 安装 yolov8
conda create -n yolov8 python==3.8 -y
conda activate yolov8
pip install ultralytics==8.0.5
pip install onnx

# 下载官方权重(".pt" file)
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x6.pt

                        
                      

导出 onnx

                        
                          # 640
yolo mode=export model=yolov8n.pt format=onnx dynamic=True    #simplify=True
yolo mode=export model=yolov8s.pt format=onnx dynamic=True    #simplify=True
yolo mode=export model=yolov8m.pt format=onnx dynamic=True    #simplify=True
yolo mode=export model=yolov8l.pt format=onnx dynamic=True    #simplify=True
yolo mode=export model=yolov8x.pt format=onnx dynamic=True    #simplify=True
# 1280
yolo mode=export model=yolov8x6.pt format=onnx dynamic=True   #simplify=True

                        
                      

3.3 编译 onnx

                        
                          # 把你的onnx文件放到这个路径:tensorrt-alpha/data/yolov8
cd tensorrt-alpha/data/yolov8
# 请把LD_LIBRARY_PATH:换成您自己的路径。
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8n.onnx  --saveEngine=yolov8n.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8s.onnx  --saveEngine=yolov8s.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8m.onnx  --saveEngine=yolov8m.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8l.onnx  --saveEngine=yolov8l.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8x.onnx  --saveEngine=yolov8x.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=yolov8x6.onnx  --saveEngine=yolov8x6.trt  --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280

                        
                      

你将会的到例如:yolov8n.trt、yolov8s.trt、yolov8m.trt等文件.

3.4 编译运行

                        
                          git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/yolov8
mkdir build
cd build
cmake ..
make -j10
# 注: 效果图默认保存在路径 tensorrt-alpha/yolov8/build

# 下面参数解释
# --show 表示可视化结果
# --savePath 表示保存,默认保存在build目录
# --savePath=../ 保存在上一级目录

## 640
# 推理图片
./app_yolov8  --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=1  --img=../../data/6406407.jpg   --show --savePath
./app_yolov8  --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8  --video=../../data/people.mp4  --show --savePath

# 推理视频
./app_yolov8  --model=../../data/yolov8/yolov8n.trt     --size=640 --batch_size=8  --video=../../data/people.mp4  --show --savePath=../

# 在线推理相机视频
./app_yolov8  --model=../../data/yolov8/yolov8n.trt     --size=640 --batch_size=2  --cam_id=0  --show

## 1280
# infer camera
./app_yolov8  --model=../../data/yolov8/yolov8x6.trt     --size=1280 --batch_size=2  --cam_id=0  --show

                        
                      

4、参考

https://github.com/FeiYull/TensorRT-Alpha 。

最后此篇关于yolov8tensorrt模型加速部署【实战】的文章就讲到这里了,如果你想了解更多关于yolov8tensorrt模型加速部署【实战】的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com