gpt4 book ai didi

每个Java程序员都必须知道的四种负载均衡算法

转载 作者:我是一只小鸟 更新时间:2023-01-10 22:31:46 25 4
gpt4 key购买 nike

前言

一般来说,我们在设计系统的时候,为了系统的高扩展性,会尽可能的创建无状态的系统,这样我们就可以采用集群的方式部署,最终很方便的根据需要动态增减服务器数量。但是,要使系统具有更好的可扩展性,除了无状态设计之外,还要考虑采用什么负载均衡算法,本文就带领大家认识以下常见的4种负载均衡算法.

欢迎关注个人公众号『JAVA旭阳』交流沟通 。

什么是负载均衡

负载均衡是指多台服务器以对称的方式组成一个服务器集群。每台服务器的地位相当(但不同的服务器可能性能不同),可以独立提供服务,无需其他服务器的辅助。为了保证系统的可扩展性,需要有一种算法能够将系统负载平均分配给集群中的每台服务器。这种算法称为负载均衡算法。负责执行负载均衡算法并平均分配请求的服务器称为负载均衡器.

随机算法

随机算法非常简单,该算法的核心是通过随机函数随机获取一个服务器进行访问。假设我们现在有四台服务器, 192.168.1.1~ 192.168.1.4 , 该算法用java实现大致如下:

                        
                          public class RandomTest {

    private static final List<String> servers = Arrays.asList("192.168.1.1", "192.168.1.2", "192.168.1.3", "192.168.1.4");

    public static String getServer() {
        Random random = new Random();
        int index = random.nextInt(servers.size());
        return servers.get(index);
    }


    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            String server = getServer();
            System.out.println("select server: "+server);
        }
    }
}

                        
                      

当样本较小时,算法可能分布不均匀,但根据概率论,样本越大,负载会越均匀,而负载均衡算法本来就是为应对高并发场景而设计的。该算法的另一个缺点是所有机器都有相同的访问概率, 如果服务器性能不同,负载将不平衡.

轮询算法

Round-Robin 轮询算法是另一种经典的负载均衡算法。请求以循环的方式分发到集群中的所有服务器。同理,对于上述四台服务器,假设客户端向集群发送10个请求,则请求分布将如下图所示:

在十个请求中,第1、第五和第九个请求将分配给 192.168.1.1 ,第2、第六和第十个请求将分配给 192.168.1.2 ,依此类推。我们可以看到 round-robin 算法可以在集群中均匀的分配请求。但是,该算法具有与随机算法相同的缺点,如果服务器性能不同,负载将不平衡,因此需要加权轮询算法.

加权轮询算法

Weighted Round-Robin 加权轮询算法是在 round-robin 算法的基础上根据服务器的性能分配权重。服务器能支持的请求越多,权重就越高,分配的请求也就越多。对于同样的10个请求,使用加权轮询算法的请求分布会如下图所示:

可以看到 192.168.1.4 权重最大,分配的请求数最多。看一下使用Java简单实现的以下加权循环算法.

                        
                          public class RoundRobinTest {

    public class Node{
        private String ip;

        private Integer weight;

        private Integer currentWeight;

        public Node(String ip,Integer weight) {
            this.ip = ip;
            this.weight = weight;
            this.currentWeight = weight;
        }

        public String getIp() {
            return ip;
        }

        public void setIp(String ip) {
            this.ip = ip;
        }

        public Integer getWeight() {
            return weight;
        }

        public void setWeight(Integer weight) {
            this.weight = weight;
        }

        public Integer getCurrentWeight() {
            return currentWeight;
        }

        public void setCurrentWeight(Integer currentWeight) {
            this.currentWeight = currentWeight;
        }
    }

    List<Node> servers = Arrays.asList(
            new Node("192.168.1.1",1),
            new Node("192.168.1.2",2),
            new Node("192.168.1.3",3),
            new Node("192.168.1.4",4));
    private Integer totalWeight;

    public RoundRobinTest() {
        this.totalWeight = servers.stream()
                .mapToInt(Node::getWeight)
                .reduce((a,b)->a+b).getAsInt();
    }


    public String getServer() {
        Node node = servers.stream().max(Comparator.comparingInt(Node::getCurrentWeight)).get();
        node.setCurrentWeight(node.getCurrentWeight()-totalWeight);
        servers.forEach(server->server.setCurrentWeight(server.getCurrentWeight()+server.getWeight()));
        return node.getIp();
    }


    public static void main(String[] args) {
        RoundRobinTest roundRobinTest = new RoundRobinTest();
        for (int i = 0; i < 10; i++) {
            String server = roundRobinTest.getServer();
            System.out.println("select server: "+server);
        }
    }

                        
                      

该算法的核心是的动态计算 currentWeight 。每个服务器被选中后, currentWeight 需要减去所有服务器的权重之和,这样可以避免权重高的服务器一直被选中。权重高的服务器有更多的分配请求,请求可以平均分配给所有服务器.

哈希算法

哈希算法,顾名思义,就是利用哈希表根据 计算出请求的路由hashcode%N。这里hashcode代表哈希值,N代表服务器数量。该算法的优点是实现起来非常简单。具体实现如下:

                        
                          rivate static final List<String> servers = Arrays.asList("192.168.1.1", "192.168.1.2", "192.168.1.3", "192.168.1.4");

    public static String getServer(String key) {
        int hash = key.hashCode();
        int index =  hash%servers.size();
        return servers.get(index);
    }

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            String server = getServer(String.valueOf(i));
            System.out.println("select server: "+server);
        }
    }

                        
                      

哈希算法在很多缓存分布式存储系统中很常见,比如 Memorycached 和 Redis ,但是一般不会用到上面的哈希算法,而是优化后的一致性哈希算法.

总结

本文总结了负载均衡常见的4种算法,我们可以发现 nginx 或者 spring cloud 中的 ribbon 都使用到了这样的算法思想,我们可以根据自己的业务场景选择合适算法.

欢迎关注个人公众号『JAVA旭阳』交流沟通 。

最后此篇关于每个Java程序员都必须知道的四种负载均衡算法的文章就讲到这里了,如果你想了解更多关于每个Java程序员都必须知道的四种负载均衡算法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com