- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
随着 Prometheus 监控的组件、数量、指标越来越多,Prometheus 对计算性能的要求会越来越高,存储占用也会越来越多.
在这种情况下,要优化 Prometheus 性能, 优化存储占用. 第一时间想到的可能是各种 Prometheus 的兼容存储方案, 如 Thanos 或 VM、Mimir 等。但是实际上虽然集中存储、长期存储、存储降采样及存储压缩可以一定程度解决相关问题,但是治标不治本.
本次重点介绍第二种办法:如何根据实际的使用情况精简 Prometheus 的指标和存储占用?
relabel
在 metric_relabel_configs
或 write_relabel_configs
仅 keep
2-4 中的指标, 以此大幅减少 Prometheus 需要存储的指标量. 要具体实现这个思路, 可以通过 Grafana Labs 出品的 mimirtool 来搞定. 。
我这里有个前后的对比效果, 可供参考这样做效果有多惊人
Grafana Mimir 是一款以对象存储为存储方式的 Prometheus 长期存储解决方案, 从 Cortex 演化而来. 官方号称支持亿级别的 series 写入存储和查询. 。
Grafana Mimirtool 是 Mimir 发布的一个实用工具, 可单独使用. 。
Grafana Mimirtool 支持从以下方面提取指标
然后,Grafana Mimirtool可以将这些提取的指标与Prometheus或Cloud Prometheus实例中的活动 series 进行比较,并输出一个 used 指标和 unused 指标的列表.
假定
具体如下
# 通过 Grafana API分析 Grafana 用到的指标
# 前提是现在 Grafana上创建 API Keys
mimirtool analyze grafana --address http://172.16.0.20:32651 --key=eyJrIjoiYjBWMGVoTHZTY3BnM3V5UzNVem9iWDBDSG5sdFRxRVoiLCJuIjoibWltaXJ0b29sIiwiaWQiOjF9
📝说明
http://172.16.0.20:32651
是 Grafana 地址 --key=eyJr
是 Grafana API Token. 通过如下界面获得:
获取到的是一个 metrics-in-grafana.json , 内容概述如下
{
"metricsUsed": [
":node_memory_MemAvailable_bytes:sum",
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",
"alertmanager_notification_latency_seconds_bucket",
"alertmanager_notification_latency_seconds_count",
"alertmanager_notification_latency_seconds_sum",
"alertmanager_notifications_failed_total",
"alertmanager_notifications_total",
"cluster",
"cluster:namespace:pod_cpu:active:kube_pod_container_resource_limits",
"cluster:namespace:pod_cpu:active:kube_pod_container_resource_requests",
"cluster:namespace:pod_memory:active:kube_pod_container_resource_limits",
"cluster:namespace:pod_memory:active:kube_pod_container_resource_requests",
"cluster:node_cpu:ratio_rate5m",
"container_cpu_cfs_periods_total",
"container_cpu_cfs_throttled_periods_total",
"..."
],
"dashboards": [
{
"slug": "",
"uid": "alertmanager-overview",
"title": "Alertmanager / Overview",
"metrics": [
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",
"alertmanager_notification_latency_seconds_bucket",
"alertmanager_notification_latency_seconds_count",
"alertmanager_notification_latency_seconds_sum",
"alertmanager_notifications_failed_total",
"alertmanager_notifications_total"
],
"parse_errors": null
},
{
"slug": "",
"uid": "c2f4e12cdf69feb95caa41a5a1b423d9",
"title": "etcd",
"metrics": [
"etcd_disk_backend_commit_duration_seconds_bucket",
"etcd_disk_wal_fsync_duration_seconds_bucket",
"etcd_mvcc_db_total_size_in_bytes",
"etcd_network_client_grpc_received_bytes_total",
"etcd_network_client_grpc_sent_bytes_total",
"etcd_network_peer_received_bytes_total",
"etcd_network_peer_sent_bytes_total",
"etcd_server_has_leader",
"etcd_server_leader_changes_seen_total",
"etcd_server_proposals_applied_total",
"etcd_server_proposals_committed_total",
"etcd_server_proposals_failed_total",
"etcd_server_proposals_pending",
"grpc_server_handled_total",
"grpc_server_started_total",
"process_resident_memory_bytes"
],
"parse_errors": null
},
{...}
]
}
如果无法创建 Grafana API Token, 只要有 Grafana Dashboards json 文件, 也可以用来分析, 示例如下
# 通过 Grafana Dashboard json 分析 Grafana 用到的指标
mimirtool analyze dashboard grafana_dashboards/blackboxexporter-probe.json
mimirtool analyze dashboard grafana_dashboards/es.json
得到的 json 结构和上一节类似, 就不赘述了. 。
具体操作如下
# (可选)通过 kubectl cp 将用到的 rule files 拷贝到本地
kubectl cp <prompod>:/etc/prometheus/rules/<releasename>-kube-prometheus-st-prometheus-rulefiles-0 -c prometheus ./kube-prometheus-stack/rulefiles/
# 通过 Prometheus rule files 分析 Prometheus Rule 用到的指标(涉及 recording rule 和 alert rules)
mimirtool analyze rule-file ./kube-prometheus-stack/rulefiles/*
结果如下 metrics-in-ruler.json
{
"metricsUsed": [
"ALERTS",
"aggregator_unavailable_apiservice",
"aggregator_unavailable_apiservice_total",
"apiserver_client_certificate_expiration_seconds_bucket",
"apiserver_client_certificate_expiration_seconds_count",
"apiserver_request_terminations_total",
"apiserver_request_total",
"blackbox_exporter_config_last_reload_successful",
"..."
],
"ruleGroups": [
{
"namspace": "default-monitor-kube-prometheus-st-kubernetes-apps-ae2b16e5-41d8-4069-9297-075c28c6969e",
"name": "kubernetes-apps",
"metrics": [
"kube_daemonset_status_current_number_scheduled",
"kube_daemonset_status_desired_number_scheduled",
"kube_daemonset_status_number_available",
"kube_daemonset_status_number_misscheduled",
"kube_daemonset_status_updated_number_scheduled",
"..."
]
"parse_errors": null
},
{
"namspace": "default-monitor-kube-prometheus-st-kubernetes-resources-ccb4a7bc-f2a0-4fe4-87f7-0b000468f18f",
"name": "kubernetes-resources",
"metrics": [
"container_cpu_cfs_periods_total",
"container_cpu_cfs_throttled_periods_total",
"kube_node_status_allocatable",
"kube_resourcequota",
"namespace_cpu:kube_pod_container_resource_requests:sum",
"namespace_memory:kube_pod_container_resource_requests:sum"
],
"parse_errors": null
},
{...}
]
}
具体如下
# 综合分析 Prometheus 采集到的 VS. (展示(Grafana Dashboards) + 记录及告警(Rule files))
mimirtool analyze prometheus --address=http://172.16.0.20:30090/ --grafana-metrics-file="metrics-in-grafana.json" --ruler-metrics-file="metrics-in-ruler.json"
📝说明
--address=http://172.16.0.20:30090/
为 prometheus 地址 --grafana-metrics-file="metrics-in-grafana.json"
为第一步得到的 json 文件 --ruler-metrics-file="kube-prometheus-stack-metrics-in-ruler.json"
为第二步得到的 json 文件 输出结果 prometheus-metrics.json 如下
{
"total_active_series": 270336,
"in_use_active_series": 61055,
"additional_active_series": 209281,
"in_use_metric_counts": [
{
"metric": "rest_client_request_duration_seconds_bucket",
"count": 8855,
"job_counts": [
{
"job": "kubelet",
"count": 4840
},
{
"job": "kube-controller-manager",
"count": 1958
},
{...}
]
},
{
"metric": "grpc_server_handled_total",
"count": 4394,
"job_counts": [
{
"job": "kube-etcd",
"count": 4386
},
{
"job": "default/kubernetes-ebao-ebaoops-pods",
"count": 8
}
]
},
{...}
],
"additional_metric_counts": [
{
"metric": "rest_client_rate_limiter_duration_seconds_bucket",
"count": 81917,
"job_counts": [
{
"job": "kubelet",
"count": 53966
},
{
"job": "kube-proxy",
"count": 23595
},
{
"job": "kube-scheduler",
"count": 2398
},
{
"job": "kube-controller-manager",
"count": 1958
}
]
},
{
"metric": "rest_client_rate_limiter_duration_seconds_count",
"count": 7447,
"job_counts": [
{
"job": "kubelet",
"count": 4906
},
{
"job": "kube-proxy",
"count": 2145
},
{
"job": "kube-scheduler",
"count": 218
},
{
"job": "kube-controller-manager",
"count": 178
}
]
},
{...}
]
}
keep
用到的指标 write_relabel_configs
环节配置 如果你有使用 remote_write , 那么直接在 write_relabel_configs 环节配置 keep relabel 规则, 简单粗暴. 。
可以先用 jp 命令得到所有需要 keep 的metric name
jq '.metricsUsed' metrics-in-grafana.json \
| tr -d '", ' \
| sed '1d;$d' \
| grep -v 'grafanacloud*' \
| paste -s -d '|' -
输出结果类似如下
instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up
然后直接在 write_relabel_configs 环节配置 keep relabel 规则
remote_write:
- url: <remote_write endpoint>
basic_auth:
username: <按需>
password: <按需>
write_relabel_configs:
- source_labels: [__name__]
regex: instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up
action: keep
metric_relabel_configs
环节配置 如果没有使用 remote_write , 那么只能在 metric_relabel_configs 环节配置了. 。
以 etcd job 为例: (以 prometheus 配置为例, Prometheus Operator 请自行按需调整) 。
- job_name: serviceMonitor/default/monitor-kube-prometheus-st-kube-etcd/0
honor_labels: false
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- kube-system
scheme: https
tls_config:
insecure_skip_verify: true
ca_file: /etc/prometheus/secrets/etcd-certs/ca.crt
cert_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt
key_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key
relabel_configs:
- source_labels:
- job
target_label: __tmp_prometheus_job_name
- ...
metric_relabel_configs:
- source_labels: [__name__]
regex: etcd_disk_backend_commit_duration_seconds_bucket|etcd_disk_wal_fsync_duration_seconds_bucket|etcd_mvcc_db_total_size_in_bytes|etcd_network_client_grpc_received_bytes_total|etcd_network_client_grpc_sent_bytes_total|etcd_network_peer_received_bytes_total|etcd_network_peer_sent_bytes_total|etcd_server_has_leader|etcd_server_leader_changes_seen_total|etcd_server_proposals_applied_total|etcd_server_proposals_committed_total|etcd_server_proposals_failed_total|etcd_server_proposals_pending|grpc_server_handled_total|grpc_server_started_total|process_resident_memory_bytes|etcd_http_failed_total|etcd_http_received_total|etcd_http_successful_duration_seconds_bucket|etcd_network_peer_round_trip_time_seconds_bucket|grpc_server_handling_seconds_bucket|up
action: keep
keep
而使用 drop
同样滴, 不用 keep 而改为使用 drop 也是可以的. 这里不再赘述. 。
🎉🎉🎉 。
本文中,介绍了精简 Prometheus 指标的需求, 然后说明如何使用 mimirtool analyze 命令来确定Grafana Dashboards 以及 Prometheus Rules 中用到的指标。然后用 analyze prometheus 分析了展示和告警中 used 和 unused 的活动 series,最后配置了 Prometheus 以仅 keep 用到的指标.
结合这次实战, 精简率可以达到 5 倍左右, 效果还是非常明显的. 推荐试一试. 👍️👍️👍️ 。
三人行, 必有我师; 知识共享, 天下为公. 本文由东风微鸣技术博客 EWhisper.cn 编写. 。
最后此篇关于如何精简Prometheus的指标和存储占用的文章就讲到这里了,如果你想了解更多关于如何精简Prometheus的指标和存储占用的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在运行一个辅助角色,并检查 Azure 上托管的存储中是否存在数据。当我将连接字符串用于经典类型的存储时,我的代码可以正常工作,但是当我连接到 V2 Azure 存储时,它会抛出此异常。 “远程服
在我的应用程序的主页上,我正在进行 AJAX 调用以获取应用程序各个部分所需的大量数据。该调用如下所示: var url = "/Taxonomy/GetTaxonomyList/" $.getJSO
大家好,我正在尝试将我的商店导入我的 Vuex Route-Gard。 路由器/auth-guard.js import {store} from '../store' export default
我正在使用 C# 控制台应用程序 (.NET Core 3.1) 从 Azure Blob 存储读取大量图像文件并生成这些图像的缩略图。新图像将保存回 Azure,并将 Blob ID 存储在我们的数
我想将 Mlflow 设置为具有以下组件: 后端存储(本地):在本地使用 SQLite 数据库存储 Mlflow 实体(run_id、params、metrics...) 工件存储(远程):使用 Az
我正在使用 C# 控制台应用程序 (.NET Core 3.1) 从 Azure Blob 存储读取大量图像文件并生成这些图像的缩略图。新图像将保存回 Azure,并将 Blob ID 存储在我们的数
我想将 Mlflow 设置为具有以下组件: 后端存储(本地):在本地使用 SQLite 数据库存储 Mlflow 实体(run_id、params、metrics...) 工件存储(远程):使用 Az
我的 Windows 计算机上的本地文件夹中有一些图像。我想将所有图像上传到同一容器中的同一 blob。 我知道如何使用 Azure Storage SDKs 上传单个文件BlockBlobServi
我尝试发出 GET 请求来获取我的 Azure Blob 存储帐户的帐户详细信息,但每次都显示身份验证失败。谁能判断形成的 header 或签名字符串是否正确或是否存在其他问题? 代码如下: cons
这是用于编写 JSON 的 NeutralinoJS 存储 API。是否可以更新 JSON 文件(推送数据),而不仅仅是用新的 JS 对象覆盖数据。怎么做到的??? // Javascript
我有一个并行阶段设置,想知道是否可以在嵌套阶段之前运行脚本,所以像这样: stage('E2E-PR-CYPRESS') { when { allOf {
我想从命令行而不是从GUI列出VirtualBox VM的详细信息。我对存储细节特别感兴趣。 当我在GUI中单击VM时,可以看到包括存储部分在内的详细信息: 但是到目前为止,我还没有找到通过命令行执行
我有大约 3500 个防洪设施,我想将它们表示为一个网络来确定流动路径(本质上是一个有向图)。我目前正在使用 SqlServer 和 CTE 来递归检查所有节点及其上游组件,只要上游路径没有 fork
谁能告诉我 jquery data() 在哪里存储数据以及何时删除以及如何删除? 如果我用它来存储ajax调用结果,会有性能问题吗? 例如: $("body").data("test", { myDa
有人可以建议如何为 Firebase 存储中的文件设置备份。我能够备份数据库,但不确定如何为 firebase 存储中的文件(我有图像)设置定期备份。 最佳答案 如何进行 Firebase 存储的本地
我最近开始使用 firebase 存储和 firebase 功能。现在我一直在开发从功能到存储的文件上传。 我已经让它工作了(上传完成并且文件出现在存储部分),但是,图像永远保持这样(永远在右侧加载)
我想只允许用户将文件上传到他们自己的存储桶中,最大文件大小为 1MB,仍然允许他们删除文件。我添加了以下内容: match /myusers/{userId}/{allPaths=**} { al
使用生命周期管理策略将容器的内容从冷访问层移动到存档。我正在尝试以下策略,希望它能在一天后将该容器中的所有文件移动到存档层,但事实并非如此在职的。我设置了选择标准“一天未使用后”。 这是 json 代
对于连接到 Azure 存储端点,有 http 和 https 两个选项。 第一。 https 会带来开销,可能是 5%-10%,但我不支付同一个数据中心的费用。 第二。 http 更快,但 Auth
有人可以帮我理解这一点吗?我创建了Virtual Machine in Azure running Windows Server 2012 。我注意到 Azure 自动创建了一个存储帐户。当我进入该存
我是一名优秀的程序员,十分优秀!