gpt4 book ai didi

docker搭建Elasticsearch、Kibana、Logstash同步mysql数据到ES

转载 作者:我是一只小鸟 更新时间:2022-12-28 14:31:41 28 4
gpt4 key购买 nike

1、前言

在数据量大的企业级实践中, Elasticsearch 显得非常常见,特别是数据表超过千万级后,无论怎么优化,还是有点力不从心!使用中,最首先的问题就是怎么把千万级数据同步到 Elasticsearch 中,在一些开源框架中知道了,有专门进行同步的!那就是 Logstash 。在思考,同步完怎么查看呢,这时 Kibana 映入眼帘,可视化的界面,让使用更加的得心应手哈!!这就是三剑客 ELK 。不过大多时候都是进行日志采集的,小编没有用,只是用来解决一个表的数据量大,查询慢的!后面小编在专门搭建日志采集的 ELK .

2、三者介绍

1. Elasticsearch

Elasticsearch 是一个 分布式 、 RESTful 风格的 搜索 和 数据分析引擎 ,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,Elasticsearch 会集中存储您的数据,让您飞快完成搜索,微调相关性,进行强大的分析,并轻松缩放规模.

2. Kibana

Kibana 是一个免费且开放的 用户界面 ,能够让您对 Elasticsearch 数据进行 可视化 ,并让您在 Elastic Stack 中进行导航。您可以进行各种操作,从跟踪查询负载,到理解请求如何流经您的整个应用,都能轻松完成.

3. Logstash

Logstash 是免费且开放的 服务器端数据处理管道 ,能够从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.

3、版本选择

现在最新版就是 8.5 ,最新的教程少和问题未知,小编选择7版本的,求一手稳定哈! 。

于是去 hub.docker 查看了一下,经常用的版本,最终确定为: 7.17.7 。

dockerHub官网地址 。

官方规定: 安装 Elastic Stack 时,您必须在整个堆栈中使用相同的版本。例如,如果您使用的是 Elasticsearch 7.17.7,则安装 Beats 7.17.7、APM Server 7.17.7、Elasticsearch Hadoop 7.17.7、Kibana 7.17.7 和 Logstash 7.17.7 。

在这里插入图片描述

4、搭建mysql

1. 拉去MySQL镜像

                        
                          sudo docker pull mysql:5.7

                        
                      

) 。

2. Docker启动MySQL

                        
                          sudo docker run -p 3306:3306 --name mysql \
-v /mydata/mysql/log:/var/log/mysql \
-v /mydata/mysql/data:/var/lib/mysql \
-v /mydata/mysql/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
####这里往下是解释,不需要粘贴到linux上#############
--name 指定容器名字
-v 将对应文件挂载到linux主机上
-e 初始化密码
-p 容器端口映射到主机的端口(把容器的3306映射到linux中3306,这样windows上就可以访问这个数据库)
-d 后台运行

                        
                      

在这里插入图片描述

3. Docker配置MySQL

                        
                          vim /mydata/mysql/conf/my.cnf # 创建并进入编辑

                        
                      
                        
                          [client]
default-character-set=utf8
[mysql]
default-character-set=utf8
[mysqld]
init_connect='SET collation_connection = utf8_unicode_ci'
init_connect='SET NAMES utf8'
character-set-server=utf8
collation-server=utf8_unicode_ci
skip-character-set-client-handshake
skip-name-resolve

                        
                      

在这里插入图片描述

4. Docker重启MySQL使配置生效

                        
                          docker restart mysql

                        
                      

5. 新增数据库

在这里插入图片描述

6. 新建测试表

                        
                          DROP TABLE IF EXISTS `sys_log`;
CREATE TABLE `sys_log`  (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '日志主键',
  `title` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '模块标题',
  `business_type` int(2) NULL DEFAULT 0 COMMENT '业务类型(0其它 1新增 2修改 3删除)',
  `method` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '方法名称',
  `request_method` varchar(10) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求方式',
  `oper_name` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '操作人员',
  `oper_url` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求URL',
  `oper_ip` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '主机地址',
  `oper_time` datetime(0) NULL DEFAULT NULL COMMENT '操作时间',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1585197503834284034 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '操作日志记录' ROW_FORMAT = Dynamic;

SET FOREIGN_KEY_CHECKS = 1;

                        
                      

5、ELK搭建准备

1. 创建挂载的文件

es挂载:

                        
                          mkdir -p /mydata/elk/elasticsearch/{config,plugins,data,logs}

                        
                      

kibana挂载:

                        
                          mkdir -p /mydata/elk/kibana/config

                        
                      

logstash挂载:

                        
                          mkdir -p /mydata/elk/logstash/config

                        
                      

2. ES挂载具体配置

                        
                          vim /mydata/elk/elasticsearch/config/elasticsearch.yml

                        
                      

输入下面命令:

                        
                          http.host: 0.0.0.0
xpack.security.enabled: false

                        
                      

http.host:任何地址都可以访问。 xpack.security.enabled:关闭密码认证 。

3. Kibana挂载具体配置

                        
                          vim /mydata/elk/kibana/config/kibana.yml

                        
                      

内容:

                        
                          server.host: 0.0.0.0
elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

                        
                      

elasticsearch.hosts:指向es地址 。

4. Logstash挂载具体配置

                        
                          vim /mydata/elk/logstash/config/logstash.yml

                        
                      

内容:

                        
                          http.host: 0.0.0.0
xpack.monitoring.elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

                        
                      

记录存放:

                        
                          touch log
chmod 777 log

                        
                      
                        
                          vim /mydata/elk/logstash/config/logstash.conf

                        
                      

内容:

jdbc_driver_library :指定必须要自己下载 mysql-connector-java-8.0.28.jar ,版本自己决定, 下载地址 ; 。

statement :如果sql长,可以指定sql文件,直接指定文件所在位置, 这里的位置都为容器内部的地址 ; 。

last_run_metadata_path :上次记录存放文件对应上方的log.

在这里插入图片描述

                        
                          input {
    stdin {
    }
    jdbc {
      jdbc_connection_string => "jdbc:mysql://192.168.239.131:3306/test?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC"
      jdbc_user => "root"
      jdbc_password => "root"
      jdbc_driver_library => "/usr/share/logstash/config/mysql-connector-java-8.0.28.jar"
      jdbc_driver_class => "com.mysql.jdbc.Driver"
      jdbc_paging_enabled => "true"
      jdbc_page_size => "300000"
      statement => "SELECT id, title, business_type, method, request_method, oper_name, oper_url, oper_ip, oper_time FROM sys_log"
      schedule => "*/1 * * * *"
      use_column_value => false
      tracking_column_type => "timestamp"
      tracking_column => "oper_time"
      record_last_run => true
      jdbc_default_timezone => "Asia/Shanghai"
      last_run_metadata_path => "/usr/share/logstash/config/log"
    }
}
 
output {
    elasticsearch {
        hosts => ["192.168.239.131:9200"]
        index => "sys_log"
        document_id => "%{id}"
    }
    stdout {
        codec => json_lines
    }
}


                        
                      

流水线指定上面的配置文件:

                        
                          vim /mydata/elk/logstash/config/pipelines.yml

                        
                      

内容:

                        
                          - pipeline.id: sys_log
  path.config: "/usr/share/logstash/config/logstash.conf"

                        
                      

最终 /mydata/elk/logstash/config/ 下的文件 。

在这里插入图片描述

防止保存没有修改权限,可以把上面建的文件夹和文件赋予修改权限:

                        
                          chmod 777 文件名称

                        
                      

5、运行容器

0. docker compose一键搭建

在elk目录创建:

                        
                          vim docker-compose.yml

                        
                      

内容如下:

                        
                          version: '3'
services:
  elasticsearch:
    image: elasticsearch:7.17.7
    container_name: elasticsearch
    ports:
      - "9200:9200"
      - "9300:9300"
    environment:
      - cluster.name=elasticsearch
      - discovery.type=single-node
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins
      - /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data
      - /mydata/elk/elasticsearch/logs:/usr/share/elasticsearch/logs

  kibana:
    image: kibana:7.17.7
    container_name: kibana
    ports:
      - "5601:5601"
    depends_on:
      - elasticsearch
    environment:
      I18N_LOCALE: zh-CN
    volumes:
      - /mydata/elk/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml

  logstash:
    image: logstash:7.17.7
    container_name: logstash
    ports:
      - "5044:5044"
    volumes:
      - /mydata/elk/logstash/config:/usr/share/logstash/config
    depends_on:
      - elasticsearch

                        
                      

一定要在 docker-compose.yml 所在目录执行命令!! 。

运行:

                        
                          docker compose up -d

                        
                      

在这里插入图片描述

完成后可以跳到 5 进行查看kibana!! 。

1. 运行ES

                        
                          docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" -v /mydata/elk/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data -v  /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins -d elasticsearch:7.17.7

                        
                      

在这里插入图片描述

2. 运行Kibana

                        
                          docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.239.131:9200 -p 5601:5601 -d kibana:7.17.7

                        
                      

在这里插入图片描述

3. 运行Logstash

                        
                          docker run -d -p 5044:5044 -v /mydata/elk/logstash/config:/usr/share/logstash/config --name logstash logstash:7.17.7

                        
                      

在这里插入图片描述

4. 容器完结图

在这里插入图片描述

5. 访问Kibana

http://192.168.239.131:5601/app/home#/ 。

在这里插入图片描述

6、新建索引

                        
                          PUT /sys_log
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0,
    "index": {
      "max_result_window": 100000000
    }
  },
  "mappings": {
    "dynamic": "strict",
    "properties": {
      "@timestamp": {
        "type": "date"
      },
      "@version": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      
      "business_type": {
        "type": "integer"
      },
      "title": {
        "type": "text"
      },
      "method": {
        "type": "text"
      },
      "request_method": {
        "type": "text"
      },
      "oper_name": {
        "type": "text"
      },
      "oper_url": {
        "type": "text"
      },
      "oper_ip": {
        "type": "text"
      },
      "oper_time": {
        "type": "date"
      },
      "id": {
        "type": "long"
      }
    }
  }
}

                        
                      

7、测试

新增几条记录,然后查看Logstash日志 。

                        
                          docker logs -f logstash

                        
                      

我们去kibana看一下是否已存在: 输入命令:

                        
                          GET /sys_log/_search
{
  "query": {
    "match_all": {}
  }
}

                        
                      

我们看到存在6条,和mysql一致!! 。

在这里插入图片描述
在这里插入图片描述

8、总结

话费了一天时间,终于搭建完成了,太不容易了!下篇文章搭建ELK日志,欢迎点个关注,等待更新哈!! 。

如果对你有帮助,还请不要吝啬您的发财小手,一键三连是我写作的动力,谢谢大家哈!! 。


可以看下一小编的微信公众号文章首发看,欢迎关注,一起交流哈!!

最后此篇关于docker搭建Elasticsearch、Kibana、Logstash同步mysql数据到ES的文章就讲到这里了,如果你想了解更多关于docker搭建Elasticsearch、Kibana、Logstash同步mysql数据到ES的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com