- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
Mask RCNN 是作者 Kaiming He 于 2018 年发表的论文 。
Understanding Region of Interest — (RoI Align and RoI Warp) 。
Mask RCNN 继承自 Faster RCNN 主要有三个改进:
feature map
的提取采用了 FPN
的多尺度特征网络 ROI Pooling
改进为 ROI Align
RPN
后面,增加了采用 FCN
结构的 mask
分割分支 网络结构如下图所示:
可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习.
卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。 Mask RCNN 的使用了 ResNet 和 FPN 结合的网络作为特征提取器.
FPN 的代码出现在 ./mrcnn/model.py 中,核心代码如下:
if callable(config.BACKBONE):
_, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True,
train_bn=config.TRAIN_BN)
else:
_, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
stage5=True, train_bn=config.TRAIN_BN)
# Top-down Layers
# TODO: add assert to varify feature map sizes match what's in config
P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)
P4 = KL.Add(name="fpn_p4add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
P3 = KL.Add(name="fpn_p3add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
P2 = KL.Add(name="fpn_p2add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
# Attach 3x3 conv to all P layers to get the final feature maps.
P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
# P6 is used for the 5th anchor scale in RPN. Generated by
# subsampling from P5 with stride of 2.
P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)
# Note that P6 is used in RPN, but not in the classifier heads.
rpn_feature_maps = [P2, P3, P4, P5, P6]
mrcnn_feature_maps = [P2, P3, P4, P5]
其中 resnet_graph 函数定义如下:
def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
"""Build a ResNet graph.
architecture: Can be resnet50 or resnet101
stage5: Boolean. If False, stage5 of the network is not created
train_bn: Boolean. Train or freeze Batch Norm layers
"""
assert architecture in ["resnet50", "resnet101"]
# Stage 1
x = KL.ZeroPadding2D((3, 3))(input_image)
x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
x = BatchNorm(name='bn_conv1')(x, training=train_bn)
x = KL.Activation('relu')(x)
C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
# Stage 2
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
# Stage 3
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
# Stage 4
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
block_count = {"resnet50": 5, "resnet101": 22}[architecture]
for i in range(block_count):
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
C4 = x
# Stage 5
if stage5:
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
else:
C5 = None
return [C1, C2, C3, C4, C5]
在 Faster-RCNN 中可以将 SCALE 也可以设置为多个值,而在 Mask RCNN 中则是每一特征层只对应着一个 SCALE 即对应着上述所设置的 16.
何凯明在论文中做了很多对比单个模块试验,并放出了对比结果表格.
从上图表格可以看出:
sigmoid
和 softmax
对比, sigmoid
有不小提升; FPN
的实验效果更好,可能因为 FPN 综合考虑了不同尺寸的 feature map
的信息,因此能够把握一些更精细的细节。 RoI Align
和 RoI Pooling
对比:在 instance segmentation 和 object detection 上都有不小的提升。这样看来, RoIAlign 其实就是一个更加精准的 RoIPooling ,把前者放到 Faster RCNN 中,对结果的提升应该也会有帮助。 Mask R-CNN 论文 。
最后此篇关于二阶段目标检测网络-MaskRCNN详解的文章就讲到这里了,如果你想了解更多关于二阶段目标检测网络-MaskRCNN详解的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
这与 Payubiz payment gateway sdk 关系不大一体化。但是,主要问题与构建项目有关。 每当我们尝试在模拟器上运行应用程序时。我们得到以下失败: What went wrong:
我有一个现有的应用程序,其中包含在同一主机上运行的 4 个 docker 容器。它们已使用 link 命令链接在一起。 然而,在 docker 升级后,link 行为已被弃用,并且似乎有所改变。我们现
在 Internet 模型中有四层:链路 -> 网络 -> 传输 -> 应用程序。 我真的不知道网络层和传输层之间的区别。当我读到: Transport layer: include congesti
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
前言: 生活中,我们在上网时,打开一个网页,就可以看到网址,如下: https😕/xhuahua.blog.csdn.net/ 访问网站使用的协议类型:https(基于 http 实现的,只不过在
网络 避免网络问题降低Hadoop和HBase性能的最重要因素可能是所使用的交换硬件,在项目范围的早期做出的决策可能会导致群集大小增加一倍或三倍(或更多)时出现重大问题。 需要考虑的重要事项:
网络 网络峰值 如果您看到定期的网络峰值,您可能需要检查compactionQueues以查看主要压缩是否正在发生。 有关管理压缩的更多信息,请参阅管理压缩部分的内容。 Loopback IP
Pure Data 有一个 loadbang 组件,它按照它说的做:当图形开始运行时发送一个 bang。 NoFlo 的 core/Kick 在其 IN 输入被击中之前不会发送其数据,并且您无法在 n
我有一台 Linux 构建机器,我也安装了 minikube。在 minikube 实例中,我安装了 artifactory,我将使用它来存储各种构建工件 我现在希望能够在我的开发机器上做一些工作(这
我想知道每个视频需要多少种不同的格式才能支持所有主要设备? 在我考虑的主要设备中:安卓手机 + iPhone + iPad . 对具有不同比特率的视频进行编码也是一种好习惯吗? 那里有太多相互矛盾的信
我有一个使用 firebase 的 Flutter Web 应用程序,我有两个 firebase 项目(dev 和 prod)。 我想为这个项目设置 Flavors(只是网络没有移动)。 在移动端,我
我正在读这篇文章Ars article关于密码安全,它提到有一些网站“在传输之前对密码进行哈希处理”? 现在,假设这不使用 SSL 连接 (HTTPS),a.这真的安全吗? b.如果是的话,你会如何在
我试图了解以下之间的关系: eth0在主机上;和 docker0桥;和 eth0每个容器上的接口(interface) 据我了解,Docker: 创建一个 docker0桥接,然后为其分配一个与主机上
我需要编写一个java程序,通过网络将对象发送到客户端程序。问题是一些需要发送的对象是不可序列化的。如何最好地解决这个问题? 最佳答案 发送在客户端重建对象所需的数据。 关于java - 不可序列化对
所以我最近关注了this有关用 Java 制作基本聊天室的教程。它使用多线程,是一个“面向连接”的服务器。我想知道如何使用相同的 Sockets 和 ServerSockets 来发送对象的 3d 位
我想制作一个系统,其中java客户端程序将图像发送到中央服务器。中央服务器保存它们并运行使用这些图像的网站。 我应该如何发送图像以及如何接收它们?我可以使用同一个网络服务器来接收和显示网站吗? 最佳答
我正在尝试设置我的 rails 4 应用程序,以便它发送电子邮件。有谁知道我为什么会得到: Net::SMTPAuthenticationError 534-5.7.9 Application-spe
我正在尝试编写一个简单的客户端-服务器程序,它将客户端计算机连接到服务器计算机。 到目前为止,我的代码在本地主机上运行良好,但是当我将客户端代码中的 IP 地址替换为服务器计算机的本地 IP 地址时,
我需要在服务器上并行启动多个端口,并且所有服务器套接字都应在 socket.accept() 上阻塞。 同一个线程需要启动客户端套接字(许多)来连接到特定的 ServerSocket。 这能实现吗?
我的工作执行了大约 10000 次以下任务: 1) HTTP 请求(1 秒) 2)数据转换(0.3秒) 3)数据库插入(0.7秒) 每次迭代的总时间约为 2 秒,分布如上所述。 我想做多任务处理,但我
我是一名优秀的程序员,十分优秀!