gpt4 book ai didi

探索小程序底层架构原理

转载 作者:我是一只小鸟 更新时间:2022-12-14 14:31:22 26 4
gpt4 key购买 nike

双线程架构

在这之前,我们先来思考一个问题,小程序在架构上为什么会选择双线程?

为什么是双线程?

加载及渲染性能

小程序的设计之初就是要求快速,这里的快指的是加载以及渲染.

目前主流的渲染方式有以下3种:

  • Web技术渲染
  • Native技术渲染
  • Hybrid技术渲染(同时使用了webview和原生来渲染)

从小程序的定位来讲,它就不可能用纯原生技术来进行开发,因为那样它的编译以及发版都得跟随微信,所以需要像Web技术那样,有一份随时可更新的资源包放在远程,通过下载到本地,动态执行后即可渲染出界面.

但如果用纯 web 技术来开发的话,会有一个很致命的缺点那就是在 Web 技术中,UI渲染跟 JavaScript 的脚本执行都在一个单线程中执行,这就容易导致一些逻辑任务抢占UI渲染的资源,这也就跟设计之初要求的 快 相违背了.

因此微信小程序选择了Hybrid 技术,界面主要由成熟的 Web 技术渲染,辅之以大量的接口提供丰富的客户端原生能力。同时,每个小程序页面都是用不同的WebView去渲染,这样可以提供更好的交互体验,更贴近原生体验,也避免了单个WebView的任务过于繁重.

微信小程序是以webview渲染为主,原生渲染为辅的混合渲染方式 。

管控安全

由于web技术的灵活开放特点,如果基于纯web技术来渲染小程序的话,势必会存在一些不可控因素和安全风险.

为了解决安全管控的问题,小程序从设计上就阻止了开发者去使用一些浏览器提供的开放性api,比如说跳转页面、操作DOM等等。如果把这些东西一个一个地去加入到黑名单,那么势必会陷入一个非常糟糕的循环,因为浏览器的接口也非常丰富,那么就很容易遗漏一些危险的接口,而且就算是禁用掉了所有的接口,也防不住浏览器内核的下次更新.

所以要彻底解决这个问题,必须提供一个沙箱环境来运行开发者的 JavaScript 代码。这个沙箱环境只提供纯 JavaScript 的解释执行环境,没有任何浏览器相关接口。那么像 HTML5 中的 ServiceWorker 、 WebWorker 特性就符合这样的条件,这两者都是启用另一线程来执行 javaScript .

这就是小程序双线程模型的由来:

  • 渲染层: 界面渲染相关的任务全都在 WebView 线程里执行,通过逻辑层代码去控制渲染哪些界面。一个小程序存在多个界面,所以渲染层存在多个 WebView.

  • 逻辑层: 创建一个单独的线程去执行 JavaScript,在这个环境下执行的都是有关小程序业务逻辑的代码.

双线程模型

小程序的架构模型有别与传统web单线程架构,小程序为双线程架构.

微信小程序的渲染层与逻辑层分别由两个线程管理,渲染层的界面使用 webview 进行渲染;逻辑层采用 JSCore 运行 JavaScript 代码.

小程序双线程.png

webview渲染线程

如何找到渲染层?

  1. 我们可以通过调试微信开发者工具: 微信开发者工具 ->调试 ->调试微信开发者工具

wx-1.png

  1. 然后我们会再看到一个调试界面,看起来跟我们平时用的浏览器调试界面几乎一摸一样

wx-2.png

但这并不是小程序的渲染层,而是开发者工具的结构。但我们在里面可以发现有一些 webview 标签,在第一个 webview 上的src属性看着是不是有点眼熟,没猜错的话它就是我们当前小程序打开页面的路径。所以这个 webview 才是小程序真正的渲染层。这里你会发现它里面并不只有一个 webview ,其实里面包含着 视图层的webview , 业务逻辑层webview , 开发者工具的webview 。

开发者工具的逻辑层跑在 webview 中主要是为了模拟真机上的双线程 。

  1. 打开渲染层一探究竟

通过 showdevTools 方法来打开调试此webview界面的调试器 。

                        
                          document.querySelectorAll('webview')[0].showDevTools(true)

                        
                      

wx-3.png

这里我们看到的才真正是小程序的渲染层,也就是小程序代码编译后的样子,我们会发现这里的标签都与我们开发时写的不一样,都统一加了 wx- 前缀。了解过 webComponent 的同学相信一眼就能看出他们非常相似,但小程序并没有直接使用 webComponent ,而是自行搭建了一套组件系统 Exparser .

Exparser 的组件模型与 WebComponents 标准中的 Shadow DOM 高度相似。 Exparser 会维护整个页面的节点树相关信息,包括节点的属性、事件绑定等,相当于一个简化版的 Shadow DOM 实现.

为什么不直接使用 webComponent ,而是选择自行搭建一套组件系统?

点击查看 - 管控与安全:web技术可以通过脚本获取修改页面敏感内容或者随意跳转其它页面
- 能力有限:会限制小程序的表现形式
- 标签众多:增加理解成本

JSCore逻辑线程

逻辑层我们直接在小程序开发者工具的调试器中输入 document 就能看到 小程序将所有业务代码置于同一个线程中运行,在小程序开发者工具中逻辑线程同样是跑在一个webview中;webview中的appservice.html除了引入业务代码js之外,还有后台服务内嵌的一些基础功能代码.

编译原理

了解完小程序的双线程架构,我们再来看一下小程序的代码是如何编译运行的,微信开者工具模拟器运行的代码是经过本地预处理、本地编译,而微信客户端运行的代码是额外经过服务器编译的。这里我们还是以微信开发者工具为例来探索一番.

在开发者工具输入 openVendor() ,会帮我们打开微信开发者工具的 WeappVendor 文件夹 。

wx-4.png

在这里我们我们会看到一些 wxvpkg 文件,这是小程序的各个版本的基础库文件,还有两个值得我们注意的文件: wcc 、 wcsc ,这两个文件是小程序的编译器,分别用来编译 wxml 和 wxss 文件.

编译wxml

这里我们可以将开发者工具中的 wcc 编译器拷贝一份出来,尝试去用它编译一下 wxml 文件,看看最后的产物是什么?

wx-5.png

我们在终端执行一下以下命令 。

                        
                          ./wcc -b index.wxml >> wxml_output.js

                        
                      

然后它会在当前目录下生成一个 wxml_output.js 文件,文件中有一个非常重要的方法 $gwx ,该方法会返回一个函数。该函数的具体作用我们可以尝试执行一下看看结果.

我们打开渲染层 webview 搜索一下该方法(为了方便查看,这里会用个小项目来演示) 。

wx-6.png

从这里我们可以看到该方法会传入一个小程序页面的路径,返回的依然是一个函数 。

                        
                          var decodeName = decodeURI("./index/index.wxml")
var generateFunc = $gwx(decodeName)

                        
                      

我们尝试按这里流程执行一下 $gwx 返回的函数,看看返回的内容是什么?

                        
                          <!--compiler-test/index.wxml-->
<view class="qd_container" >
  <text name="title">wxml编译</text>
  <view >{{ name }}</view>
</view>

                        
                      
                        
                          const func = $gwx(decodeURI('index.wxml'))
console.log(func())

                        
                      

wx-7.png

没错,这个函数正是用来生成 Virtual DOM 。

思考:为什么 $gwx 不直接生成 Virtual DOM

点击查看 - 双线程,需要动态注入数据

编译wxss

我们同样可以用微信开发者工具中的 wcsc 来编译一下 wxss 文件.

(大家认为这里应该是会生成 css 文件还是 js 文件呢?) 。

我们在终端执行一下以下命令来编译wxss文件 。

                        
                          ./wcsc -js index.wxss >> wxss_output.js

                        
                      

wx-8.png

相比之前的 wcc 编译 wxml 文件来说,这次的编译相对来说比较简单,它主要完成了以下内容:

  • rpx单位的换算,转换成px
  • 提供 setCssToHead 方法将转换好的css添加到head中

rpx动态适配

小程序提供 rpx 单位来适配各种尺寸的设备 。

wx-9.png

比如:

                        
                          /*index.wxss */
.qd_container {
  width: 100rpx;
  background: skyblue;
  border: 1rpx solid salmon;
}
.qd_reader {
  font-size: 20rpx;
  color: #191919;
  font-weight: 400;
}

                        
                      

经过编译之后会生成 setCssToHead 方法并执行 。

                        
                          setCssToHead([".",[1],"qd_container { width: ",[0,100],"; background: skyblue; border: ",[0,1]," solid salmon; }\n.",[1],"qd_reader { font-size: ",[0,20],"; color: #191919; font-weight: 400; }\n",])( typeof __wxAppSuffixCode__ == "undefined"? undefined : __wxAppSuffixCode__ );

                        
                      

里面会调用 transformRPX 方法将 rpx 转成 px 。

                        
                          var transformRPX = window.__transformRpx__ || function(number, newDeviceWidth) {
if ( number === 0 ) return 0;
number = number / BASE_DEVICE_WIDTH * ( newDeviceWidth || deviceWidth );
number = Math.floor(number + eps);
if (number === 0) {
if (deviceDPR === 1 || !isIOS) {
return 1;
} else {
return 0.5;
}
}
return number;
}

                        
                      
                        
                          // 主要公式
number = number / BASE_DEVICE_WIDTH * (newDeviceWidth || deviceWidth);
number = Math.floor(number + eps);  //为了精确
// rpx值 / 基础设备宽750 * 真实设备宽

                        
                      

渲染流程

上面了解完 wxml 与 wxss 的编译过程,我们再来整体了解一下页面的渲染流程.

先来了解渲染层模版

从上面的渲染层 webview 我们可以找到这两个webview 。

wx-10.png

第一个 index/index webview我们上面说了它就是对应我们的小程序的渲染层,也就是真正的小程序页面.

那么下面这个 instanceframe.html 是什么呢?

这个webview其实是小程序渲染模版,打开查看一番 。

wx-11.png

它其实就是提前注入了一些页面所需要的公共文件,以及红框内的一些页面独立的文件占位符,这些占位符会等小程序对应页面文件编译完成后注入进来.

如何保证代码的注入是在渲染层webview的初始化之后执行?

在刚刚渲染模版 webview 的下方有这样一段脚本:

                        
                          if (document.readyState === 'complete') {
    alert("DOCUMENT_READY")
  } else {
    const fn = () => {
      alert("DOCUMENT_READY")
      window.removeEventListener('load', fn)
    }
    window.addEventListener('load', fn)
  }

                        
                      

很明显,这里在页面初始化完成后,通过 alert 来进行通知。此时的 native/nw.js 会拦截这个 alert ,从而知道此时的webview已经初始化完成.

整体渲染流程

了解了上面这个重要过程,我们就可以将整个流程串联起来了 。

  1. 打开小程序,创建视图层页的webview时,此时会初始化渲染层 webview ,并且会将该web view地址设置为 instanceframe.html ,也就是我们的渲染层模版
  2. 然后进入页面 /index/index ,等 instanceframe webview初始化完成,会将页面 index/index 编译好的代码注入进来并执行
                        
                          // 将webview src路径修改为页面路径
history.pushState('', '', 'http://127.0.0.1:26444/__pageframe__/index/index')

/*
... 
这里还有一些 wx config及wxss编译后的代码
*/

// 这里是
var decodeName = decodeURI("./index/index.wxml")
var generateFunc = $gwx(decodeName)
if (decodeName === './__wx__/functional-page.wxml') {
  generateFunc = function () {
    return {
      tag: 'wx-page',
      children: [],
    }
  }
}
if (generateFunc) {
  var CE = (typeof __global === 'object') ? (window.CustomEvent || __global.CustomEvent) : window.CustomEvent;
  document.dispatchEvent(new CE("generateFuncReady", {
    detail: {
      generateFunc: generateFunc
    }
  }))
  __global.timing.addPoint('PAGEFRAME_GENERATE_FUNC_READY', Date.now())
} else {
  document.body.innerText = decodeName + " not found"
  console.error(decodeName + " not found")
}

                        
                      
  1. 此时通过 history.pushState 方法修改webview的src但是webview并不会发送页面请求,并且将调用 $gwx 为生成一个 generateFun 方法,前面我们了解到该方法是用来生成虚拟dom的
  2. 然后会判断该方法存在时,通过 document.dispatchEvent 派发发自定义事件 generateFuncReady 将generateFunc当作参数传递给底层渲染库
  3. 然后在底层渲染库 WAWebview.js 中会监听自定义事件 generateFuncReady ,然后通过 WeixinJSBridge 通知 JS 逻辑层视图已经准备好()

wx-12.png

  1. 最后 JS 逻辑层将数据给 Webview 渲染层, WAWebview.js 在通过 virtual dom 生成真实dom过程中,它会挂载到页面的 document.body 上,至此一个页面的渲染流程就结束了

数据更新

小程序的视图层目前使用 WebView 作为渲染载体,而逻辑层是由独立的 JavascriptCore 作为运行环境.

在架构上,WebView 和 JS Core 都是独立的模块,并不具备数据直接共享的通道。所以在更新数据时必须调用 setData 来通知渲染层做更新.

setData

  • 逻辑层虚拟 DOM 树的遍历和更新,触发组件生命周期和 observer 等;
  • 将 data 从逻辑层传输到视图层;
  • 视图层虚拟 DOM 树的更新、真实 DOM 元素的更新并触发页面渲染更新。

这里第二步由于WebView 和 JS Core 都是独立的模块,数据传输是通过 evaluateJavascript 实现的,还会有额外 JS 脚本解析和执行的耗时因此数据到达渲染层是异步的.

因此切记 。

  • 不要频繁的去setData
  • 不要每次 setData 都传递大量新数据(单次stringify后不超过256kb)
  • 不要对后台态页面进行setData,会抢占正在执行的前台页面的资源

与Vue对比(再来看看Vue)

整体来讲,小程序身上或多或少都有着vue的影子...(模版文件,data,指令,虚拟dom,生命周期等) 。

但在数据更新这里,小程序却与Vue表现的截然不同.

1.页面更新DOM是同步的还是异步的?

2.既然更新DOM是个同步的过程,为什么Vue中还会有nextTick钩子?

                        
                          mounted() {
  this.name = '前端南玖'
  console.log('sync',this.$refs.title.innerText) // 旧文案
  // 新文案
  Promise.resolve().then(() => {
    console.log('微任务',this.$refs.title.innerText)
  })
  setTimeout(() => {
    console.log('宏任务',this.$refs.title.innerText)
  }, 0)
  this.$nextTick(() => {
    console.log('nextTick',this.$refs.title.innerText)
  })
}

                        
                      

这里推荐阅读这篇了解更多: Vue异步更新机制以及$nextTick原理 。

然而小程序却没有这个队列概念,频繁调用,视图会一直更新,阻塞用户交互,引发性能问题.

而Vue 每次赋值操作并不会直接更新视图,而是缓存到一个数据更新队列中,异步更新,再触发渲染,在同一个 tick 内多次赋值,也只会渲染一次.

原文首发地址 点这里 ,欢迎大家关注公众号 「前端南玖」 ,如果你想进前端交流群一起学习, 请点这里 。

我是南玖,我们下期见!!! 。

最后此篇关于探索小程序底层架构原理的文章就讲到这里了,如果你想了解更多关于探索小程序底层架构原理的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com