作者热门文章
- Java锁的逻辑(结合对象头和ObjectMonitor)
- 还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵
- 自动注册实体类到EntityFrameworkCore上下文,并适配ABP及ABPVNext
- 基于Sklearn机器学习代码实战
前两天,在朋友圈里看到一张截至2022年Q2的金融资产历年收益图如下,图中列举了国内从2005年到2022年近20年主要的金融资产历年收益率,随产生想法分析和验证下面几个问题:
分析方法 使用工具: Google OR-Tools ,OR-Tools是谷歌用于组合优化的软件工具,可以从大量可能的解决方案中找到问题的最佳解决方案。比如本例中,假如2005年初我手上有100元钱,怎么把这100元钱分到不同的金融资产上有太多方案。但基本上只会有一种组合让最终收益最大化,也基本只会有一种组合让每年本金不出现亏损的前提下实现收益尽可能最大化。这些都会借助于这个工具进行分析和验证。 一些计算条件:
分析结果 分析结果请参考: 文章 。
代码 。
//定义单年最大允许亏损比例。(比如:0.2代表单年最大允许亏损比例为20%;1代表无限制;0代表不允许亏损)
float allowableMaximumLossRatio = 1f; //无限制
//float allowableMaximumLossRatio = 0.2f; //单年最大允许亏损比例为20%
//float allowableMaximumLossRatio = 0f; //不允许亏损
//待处理数据,此处全部转换为整数处理
(String year, long[] values)[] data = new[]
{
("2005", new long[]{ 10273, 10236, 10912, 10140, 8848}),
("2006", new long[]{ 10280, 10150, 11494, 22263, 21190}),
("2007", new long[]{ 10360, 10336, 11822, 22833, 26621}),
("2008", new long[]{ 11542, 10356, 10646, 4858, 3708}),
("2009", new long[]{ 10425, 10142, 10504, 17117, 20547}),
("2010", new long[]{ 10392, 10181, 10690, 9972, 9312}),
("2011", new long[]{ 10463, 10355, 9711, 7547, 7759}),
("2012", new long[]{ 10588, 10397, 10622, 10545, 10468}),
("2013", new long[]{ 10482,10395,10061,11013,10544}),
("2014", new long[]{ 10597,10460,11848,12939,15244}),
("2015", new long[]{ 10556,10362,10993,13467,13850}),
("2016", new long[]{ 10471,10261,9965,8969,8709}),
("2017", new long[]{ 10422,10384,10165,11063,10493}),
("2018", new long[]{ 10496,10375,10543,7683,7175}),
("2019", new long[]{ 10446,10266,10422,14109,13302}),
("2020", new long[]{ 10414,10213,10315,14454,12343}),
("2021", new long[]{ 10310, 10228, 10393, 10587, 10917}),
("2022", new long[]{ 10350, 10101, 10090, 8928, 9047}),
};
// 创建CP模型.
CpModel model = new CpModel();
//定义变量:各类资产配置比例
IntVar a = model.NewIntVar(0, 100, "a"); //银行理财
IntVar b = model.NewIntVar(0, 100, "b"); //货币基金
IntVar c = model.NewIntVar(0, 100, "c"); //债卷基金
IntVar d = model.NewIntVar(0, 100, "d"); //股票基金
IntVar e = model.NewIntVar(0, 100, "e"); //股票
//创建约束条件:配置比例总和为100%
model.Add(a + b + c + d + e <= 100);
model.Add(a + b + c + d + e >= 100);
//创建约束条件:限定低风险配置比例
//model.Add(a >= 40);
//model.Add(d + e <= 40);
//定义变量数组:单年年末资金
IntVar[] yearResults = new IntVar[data.Length];
//定义变量数组:单年收益率
IntVar[] yearRatios = new IntVar[data.Length];
for (int i = 0; i<data.Length; i++)
{
var yearItem = data[i];
//定义变量:当前年度收益率
IntVar ratio = model.NewIntVar(0, 100 * 10000 * 3, $"ratio{i}");
model.Add(ratio == a * yearItem.values[0] + b * yearItem.values[1] + c * yearItem.values[2] + d * yearItem.values[3] + e * yearItem.values[4]);
yearRatios[i] = ratio;
//创建约束条件:单年最大允许亏损比例
model.Add(ratio >= Convert.ToInt32(100 * (1 - allowableMaximumLossRatio)) * 10000);
//定义变量:当前年末资金
IntVar resultA = model.NewIntVar(0, 100 * 100 * 10000 * Convert.ToInt64(Math.Pow(3, i+1)), $"resultA{i}");
model.AddMultiplicationEquality(resultA, i==0? model.NewConstant(100) : yearResults[i-1], ratio);
//定义变量:由于原生数据的收益率和配置比例是使用转换后的整数计算的,所以这里使用当前年末资金除以100*10000
IntVar result = model.NewIntVar(0, 100 * Convert.ToInt64(Math.Pow(3, i+1)), $"result{i}");
model.AddDivisionEquality(result, resultA, model.NewConstant(100 * 10000));
yearResults[i] = result;
}
//设定求解目标为最终资金最大
model.Maximize(yearResults[data.Length -1]);
//求解
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
//输出求解结果
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
Console.WriteLine("银行理财配置比: " + solver.Value(a)+"%");
Console.WriteLine("货币基金配置比: " + solver.Value(b)+"%");
Console.WriteLine("债卷基金配置比: " + solver.Value(c)+"%");
Console.WriteLine("股票基金配置比: " + solver.Value(d)+"%");
Console.WriteLine("股票配置比: " + solver.Value(e)+"%");
for (int i = 0; i<data.Length; i++)
{
Console.WriteLine($"{data[i].year} 年末资金:{solver.Value(yearResults[i])} 收益率:{String.Format("{0:P}", solver.Value(yearRatios[i]) / 1000000.00 - 1)}");
}
Console.WriteLine($"最终资金: {solver.ObjectiveValue}");
Console.WriteLine($"年化收益率: {String.Format("{0:P}", Math.Pow((solver.ObjectiveValue - 100)/100, 1.00/data.Length)-1)}");
}
else
{
Console.WriteLine("求解失败,未找到合适结果.");
}
Console.WriteLine($"求解耗时: {solver.WallTime()}s");
Github地址: 代码 。
最后此篇关于使用GoogleOR-Tools分析过去20年中国金融资产最佳配置组合的文章就讲到这里了,如果你想了解更多关于使用GoogleOR-Tools分析过去20年中国金融资产最佳配置组合的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我是一名优秀的程序员,十分优秀!